Mathematik der Funktionen

Mathematik der Funktionen​ - ein Mathematik Referat

Dieses Referat hat Anna geschrieben. Anna ging in die 11. Klasse. Für dieses Mathematik Referat hat wurde die Note 2 vergeben.
Schulnote.de und alle anderen SchülerInnen, die dieses Referat benutzen, bedanken sich bei Anna herzlichst für die fleißige Unterstützung und Bereitstellung dieser Hausaufgabe.

Ihr könnt die Leistung von Anna würdigen und mit Sternen nach Schulnoten bewerten.

Reden und Vorträge halten.

Bei Vorträgen ist die Vorbereitung und Übung das Wichtigste. Notiere Dir nur Stichpunkte zu Deinem Referat, um nicht in Versuchung zu kommen abzulesen. Vergiss bei Deiner Vorstellung nicht zu erwähnen, wer Du bist – also Deine Vorstellung, und über wen bzw. über was Du Deine Rede hältst. Rede frei und beachte Deine Zuhörer, aber lasse Dich nicht ablenken. Schaue in Deine Klasse und beobachte die Reaktionen. Passe dann Deine Redegeschwindigkeit an. Ein gutes Referat sollte 5-7 Minuten dauern. Verpacke etwas Witz in Deinem Vortrag, um Dein Publikum nicht zu langweilen. Viel Erfolg wünscht Schulnote.de!

Verbessere Deine Anna Note und profitiere mit Geschichten und Referaten bei Vorträgen von dem Wissen hunderter Schüler deutschlandweit. Viele Schüler haben ihre Anna Vorträge bei schulnote.de gefunden und durch unsere Referate, Biographien und Geschichten ihre Leistungen verbessert. Beachte bitte, dass Du diese Arbeiten nur für die Schule verwenden darfst. Du darfst sie nirgendwo posten oder anderweitig verwenden. Wir freuen uns, wenn wir Dir geholfen haben. Berichte uns von Deiner neuen Note! Nutze dafür die Feedback-Funktion.

Dies ist ein Artikel geschrieben von SchülerIn Anna, schulnote.de ist weder für die Richtigkeit noch für die Quelle verantwortlich.

Mathematik Skriptum über Funktionen, Funktionstypen, Rationale Funktionen, Irrationale Funktionen, Transzendente Funktionen, Funktionsveränderungen, Nullstellen, Beispiele, Formelsammlung, viele Skizzen wirklich gutes Skriptum

1.1 Variablen und Mengen

E

ine Funktion ist eine Menge geordneter Paare (x;y). Sie ist eine eindeutige Zuordnung, d.h. jedem x-Wert wird nur ein einziger y-Wert zugeordnet. Jede senkrechte Gerade darf also den Graphen der Zuordnung/Funktion höchstens einmal schneiden. Dabei spielen die Namen der Variablen keine Rolle. Häufig (v.a. in der Physik) wird statt x die Variable t (für die Zeit) verwendet. Grundsätzlich gibt es eine unabhängige Variable und eine abhängige Variable. Meist ist y als Funktionswert die abhängige Variable (sie ist von x abhängig) und x (t,s,etc.) die unabhängige Variable (sie wird willkürlich gewählt). Die unabhängige Variable kommt aus der Definitionsmenge[1] D, die abhängige Variable wird der Wertemenge[2] W entnommen. Diese enthält alle Abbildungen der unabhängigen Variablen unter f, d.h. D wird abgebildet auf W (D®W). Man kann D und W bestimmten Funktionen zuordnen, z.B. ist Df die Definitionsmenge von f(x) oder Wh die Wertemenge von h(x).



Die Darstellungsweisen y=3x und f(x)=3x sind grundsätzlich identisch. Beide bezeichnen: (jedem x wird sein Dreifaches zugeordnet). Die Darstellungsweise y=… ermöglicht das Rechnen mit beiden Seiten der Gleichung, z.B. bei der Darstellung eines Kreises: . Man beachte, daß es sich nicht um eine Funktion handelt! Lediglich f(x)=… weist immer auf eine Funktion hin, z.B.: (Halbkreisfunktion)[3].



Die Aufgabe der unabhängigen Variablen ist die eines Platzhalters. So wird die Variable durch die Zahl ersetzt, deren Funktionswert wir ermitteln wollen. Suchen wir z.B. von den Funktionswert von (-2), so ersetzen wir alle x durch (-2): .


1.2 Monotonie

G

ilt für eine Funktion, daß auf dem Interval I der jeweils rechts von f(x1) folgende Funktionswert f(x2) größer oder gleich ist, so ist die Funktion auf dem Intervall I monoton steigend: . Monoton fallend ist sie dagegen wenn der umgekehrte Fall vorliegt, also jeder Funktionswert rechts von f(x1) kleiner oder gleich ist: , mit .



Abbildung 1-1 Beispiele zur Monotonie

Streng monoton steigend ist eine Funktion, wenn gilt ; streng monoton fallend, wenn gilt: , mit . (Hier reicht es also nicht, wenn der Funktionswert gleich bleibt!)



Das Intervall I heißt Monotonieintervall. Der entsprechende Teil des Graphen heißt dann Monotoniebogen.



Abbildung 1-2 Beispiele zur Umkehrfunktion


1.3 Umkehrfunktionen (Inverse Funktionen)

E

ine Umkehrfunktion läßt sich nur von einer eindeutig umkehrbaren Funktion bilden, so daß also wieder eine Funktion entsteht. Funktionen sind anschaulich eindeutig umkehrbar, wenn jede waagerechte Linie den Funktionsgraphen höchstens einmal schneidet, also jedem y-Wert nur ein x-Wert zugeordnet wird. Mathematisch ausgedrückt heißt das: eine Funktion ist eindeutig umkehrbar, wenn aus folgt, daß , womit streng monotone Funktion eindeutig umkehrbar sind. Nicht-stetige Funktionen[4] können auch eindeutig umkehrbar sein, wenn sie nicht streng monoton sind. So ist die Funktion aus Abbildung 1-2a zwar nicht monoton für die gesamte Definitionsmenge, sondern nur auf den Teilintervallen [-¥;0] (streng monoton steigend) und [0;+¥] (streng monoton fallend), aber doch eindeutig umkehrbar! Denn jedem y-Wert wird nur ein x-Wert zugeordnet. Dies wurde dadurch möglich, daß f in zwei verschiedenen Gleichungen für beide Intervalle ausgedrückt ist, und dadurch ein “Sprung” des Graphen bei x=0 entsteht:



(Intervallweise definierte Funktion)



Derartige Fälle der intervallweisen Definition sind z.B. in naturwissenschaftlichen Prozessen häufig zu finden.



Abbildung 1-3 Umkehrung der Zuordnung x®y=f(x) durch f(y)=x®y

Bildet man die Umkehrfunktion, so werden alle Lösungspaare vertauscht: Aus (x;y) wird (y;x) (siehe Abbildung 1-3). D.h. wurde z.B. vorher der Zahl x=2 der Wert y=4 zugeordnet, so wird jetzt der Zahl y=4 der Wert x=2 zugeordnet. Gewohnheitsmäßig werden dann zusätzlich die Variablennamen mitvertauscht, so daß dann der Zahl x=4 der Wert y-1=2 zugeordnet wird. Ebenfalls vertauscht werden Definitions- und Wertemenge: Df wird zu und W wird zu .



G

Die Umkehrfunktion wird ermittelt, indem die Funktionsgleichung nach der unabhängigen Variablen (x) aufgelöst wird, und dann diese mit der abhängigen Variablen (y) vertauscht wird (siehe auch Abbildung 1-2):





Zeichnerisch wurde der Graph an der Winkelhalbierenden des I. und III. Quadranten, y=x, gespiegelt.[5] Nicht eindeutig umkehrbare Funktionen können aber auch ohne weiteres für Teilintervalle, in denen der Funktionsgraph streng monoton verläuft, invertiert werden, z.B. f(x)=sinx (I=[0;p/2]) oder f(x)=x2 (I=[0;+¥)).[6]



G

Es ist manchmal sinnvoll zu wissen, welche Funktionen zueinander invers sind. Die meisten Taschenrechner haben nur eine “ln” (logarithmus naturalis)-Taste, aber keine für “e”. Da aber die meisten Taschenrechner eine INV-Taste[7] haben, kann man ohne weiteres die Werte für ln-1x , also ex, ausrechnen! Z.B. ergibt “2-INV‑ln” in der Anzeige 7,389, was e2 entspricht. Das gleiche gilt für sin-1, cos-1, tan-1 und log-1 (eigentlich “lg”, d.h. zur Basis 10!).


1.4 Stetigkeit

E

ine Funktion f(x) ist anschaulich stetig, wenn der Graph ohne Unterbrechungen, wie Lücken[8] oder Sprünge gezeichnet werden kann.



G

Eine Funktion f(x), deren Definitionsbereich eine Umgebung der Stelle x=c enthält, ist an der Stelle x=c genau dann stetig, wenn drei Bedingungen erfüllt sind:

1) Die Funktion ist für x=c definiert, d.h. f(c) existiert;

2) Der Grenzwert existiert:

3) Es gilt f(c)=g



Gelten die drei Bedingungen für alle xÎD, so ist diese Funktion über dem gesamten Definitionsbereich stetig.[9]



Beispiele:

1. Die Funktion ist an der Stelle x=2 unstetig. Zwar ist vorhanden, aber f(1) existiert nicht![10]

2. Die Gaußklammerfunktion y=f(x)=x[x] (Abbildung 2-12b) ist z.B. an der Stelle x=2 definiert: f(2)=2. Es gilt aber:

,

d.h., ist nicht vorhanden. Die Funktion ist bei x=2 und jedem weiteren ganzzahligen Wert unstetig.


1.5 Symmetrien

D

Abbildung 1-4 Symmetrische Funktion

ie Graphen von Funktionen können Symmetrien zu Punkten und vertikalen Geraden aufweisen. Interessant sind vor allem die Graphen von Funktionen, die punktsymmetrisch zum Ursprung (Nullpunkt des Koordinatensystems) oder achsensymmetrisch zur y-Achse (Ordinate) liegen. Für eine ursprungssymmetrische Funktion gilt:



f(x)=-f(-x).



Sie heißt definitionsgemäß ungerade Funktion (Abbildung 1-4).[11]

G

Ganzrationale Funktionen, die ausschließlich ungerade Exponenten aufweisen, sind grundsätzlich punktsymmetrisch zum Ursprung, z.B. .[12]



Für eine y-Achsensymmetrische Funktion gilt: f(x)=f(-x). Sie heißt definitionsgemäß gerade Funktion (Abbildung 1-5).



G

Abbildung 1-5 y–Achsensymmetrische Funktion

Ganzrationale Funktionen, die ausschließlich gerade Exponenten enthalten, sind grundsätzlich symmetrisch zur y-Achse, z.B.: .[13]



Funktionsgraphen können aber auch zu anderen vertikalen Achsen oder zu anderen Punkten symmetrisch sein (nicht jedoch zu horizontalen Achsen, dann wären es ja keine Funktionen mehr). Wie Abbildung 2-3a zeigt, liegt z.B. die Funktion







punktsymmetrisch zum Punkt (-1;0).[14]


1.6 Asymptoten

A

Abbildung 1-6 Funktionssgraph mit vertikalen und horizontalen Asymptoten

ls Asymptoten bezeichnet man Funktionen, an die sich der Graph einer anderen Funktion für x®±¥ annähert. Im folgenden sollen hier nur lineare Asymptoten behandelt werden, d.h. vertikale, horizontale oder schiefe Asymptoten. Nicht jeder Funktionsgraph hat zwangsläufig Asymptoten! Häufig treten sie bei den gebrochenrationalen Funktionen auf, überhaupt bei Verknüpfungen von Funktionen durch Quotientenbildung, z.B. , mit periodischen, vertikalen Asymptoten (Polstellen) für



Abbildung 1-7 Funktionsgraph mit vertikaler und schiefer Asymptote
1.6.1 Vertikale Asymptoten

Unter vertikalen Asymptoten versteht man senkrechte Geraden. Der Graph nähert sich einer vertikalen Asymptote bei y®±¥ an, wenn x®xp. xp ist der x-Wert, durch den die Asymptote geht, er heißt Polstelle. Vertikale Asymptoten werden mit x=xp bezeichnet.



G

Vertikale Asmptoten können von Funk­tionsgraphen nicht geschnitten werden, da sonst keine eindeutige Zuordnung vorliegt![15]


1.6.2 Horizontale Asymptoten

An horizontale Asymptoten nähert sich der Graph einer Funktion bei x®±¥ an. Dabei sind die horizontalen Asymptoten für plus und minus Unendlich nicht immer gleich. Eine solche waagerechte Gerade kann vom Funktionsgraphen mehrmals geschnitten werden, bevor der Graph asymptotisch wird und sich der horizontalen Asymptote von oben oder unten annähert. Horizontale Asymptoten werden mit einer konstanten Gleichung ausgedrückt (z.B. y=2).


1.6.3 Schiefe Asymptoten[16]

Der Funktionsgraph kann sich gegen x®±¥ auch Geraden nähern, die eine “normale” Steigung aufweisen, also



0<|m|<+¥.



Sie werden durch einfache lineare Gleichungen beschrieben, z.B. für Abbildung 1-7 mit A(x)=yA=x oder .


2 Funktionstypen
2.1 Algebraische Funktionen

A

ls algebraisch gilt eine Funktion, die aus einer begrenzten Anzahl von Summen, Differenzen, Multiplikationen, Divisionen und Wurzeln besteht, die die Form xn enthalten.
2.1.1 Rationale Funktionen
2.1.1.1 Ganzrationale Funktionen (Polynom-Funktionen)

Abbildung 2-1 Graphen verschiedener ganzrationaler Funktionen
2.1.1.1.1 Allgemeines

Wie der Name “Polynom-Funktionen” schon sagt, setzen diese Funktionen sich aus vielen unterschiedlichen Gliedern zusammen. Je nach Anzahl der Glieder ist eine solche Funktion ersten Grades, zweiten Grades, dritten Grades usw. Glieder sind zum Beispiel a1x oder allgemein aixi. Sie werden durch einen Index unterschieden, da das erste Glied ein x in der ersten und das zweite ein x in der i-ten Potenz enthält. Das größte auftretende Gleid heißt häufig anxn.



Koeffizienten sind die Zahlen, die in den einzelnen Gliedern vor der Variablen stehen. Die Funktion hat die Koeffizienten[17] 3, 7, -1 und -107. Da das letzte Glied keine Variable enthält (denn x0=1), wird es auch additive Konstante genannt (da die konstante Zahl 107 subtrahiert wird). Die anderen Koeffizienten sind multiplikative Konstanten (da die Variable mit ihnen multipliziert wird: 3 ist im Beispiel multiplikative Konstante im kubischen Glied). Der Grad einer ganzrationalen Funktion bestimmt sich dabei aus der Anzahl der Glieder, die eine Variable enthalten, bzw. stimmt mit dem größten Exponenten überein.



Achtung: Auch Glieder mit dem Koeffizienten 0 sind Glieder und müssen gezählt werden; z.B. ist f(x)=x2 eine Funktion zweiten Grades, da der größte Exponent “2” ist. Auch die Summe der Glieder mit x ergibt zwei, denn eigentlich steht dort f(x)=1×2+0x+0)



G

Definitionsmenge und Wertemenge einer jeden Polynom-Funktion sind Â. Polynom-Funktionen sind stetig im gesamten Definitionsbereich.



Sinngemäß heißen die sortierten Glieder einer Polynom-Funktion:



konstantes Glied a0, lineares Glied a1x,

quadratisches Glied a2x2 kubisches Glied a3x3, usw.
2.1.1.1.2 Allgemeine Ganzrationale Funktionen

a) Ganzrationale Funktion nullten Grades: f(x)=k.

Es ist eine konstante Funktion, d.h. der Graph ist eine Parallele zur x-Achse. Z.B. f(x)=3. Für jeden x-Wert gilt f(x)=3, d.h. jedem x-Wert wird der Wert 3 zugeordnet. (xà3) (Abbildung 2-1a).

b) Ganzrationale Funktion ersten Grades: f(x)=mx+n.

Es ist eine lineare Funktion (der Graph ist eine Gerade) mit der Steigung m und dem y-Achsenabschnitt n (Schnittpunkt des Graphen mit der y-Achse). Z.B. f(x)=2x-3 (Abbildung 2-1a b).

c) Ganzrationale Funktion zweiten Grades: f(x)=ax2+bx+c.

Sie wird auch quadratische Funktion genannt.[18] Ihr Graph ist eine Parabel, z.B. f(x)=x2; die sogenannte Normalparabel (Abbildung 2-1a c).

d) Ganzrationale Funktion dritten Grades (kubische Funktion): f(x)=ax3+bx2 +cx +d.

Der Graph wird kubische Parabel genannt, z.B. f(x)=x3 (Abbildung 2-1a d).

e) Die allgemeinen Formen ganzrationaler Funktionen höheren Grades lauten analog:

vierten Grades[19]: f(x)=ax4+bx3 +cx2+dx+e

fünften Grades: f(x)=ax5+bx4+cx3+dx2 +ex+f

sechsten Grades: f(x)=ax6+bx5+cx4+dx3+ex2+fx +g

usw.



Eine beliebige Polynom-Funktion (n-ten Grades):




2.1.1.1.3 Potenzfunktionen mit natürlichem Exponenten

Einen Spezialfall bilden die Potenzfunktionen. Potenzfunktionen sind definiert als f(x)=xn, nÎN. Hier sind bis auf einen alle Koeffizienten gleich Null. Ist n gerade, dann ist auch die Funktion gerade, z. B. f(x)=x2 oder f(x)=x4 (Abbildung 2-1a, c,e). Bei ungeradem n ist auch die Potenzfunktion ungerade, z.B. f(x)= Abbildung 2-1a, d).



Tabelle 1 Eigenschaften der Potenzfunktion y=xn mit n>0

Exponent


Gerade (n=2m)


Ungerade (n=2m+1)

Definitionsbereich


xÎÂ


xÎÂ

Wertebereich


yÎ[0;¥)


yÎÂ

Symmetrie


gerade Funktion


ungerade Funktion

Stetigkeit für


xÎÂ


xÎÂ

Monoton fallend für


xÎ(-¥;0]


– – – – – – –

Monoton steigend für


xÎ(0;¥)


xÎÂ

Gemeinsame Punkte


P1(1;1)

O(0;0)

P2(-1;1)


P1(1;1)

O(0;0)

P3(-1;-1)
2.1.1.1.4 Verhalten der Polynomfunktionen im Unendlichen

Für alle Polynom-Funktionen gilt: wenn x®±¥ geht, dann geht f(x)®±¥. Trotzdem kann man einer Polynom-Funktion ansehen, wann ihr Graph nach +¥ und wann nach -¥ verläuft. Entscheidend ist der Koeffizient im größten Glied, also an:



Tabelle 2 Eigenschaften der Polynomfunktionen

Grad der Funktion


an


Verhalten des Graphen

geradzahlig


a>0


geht auf beiden Seiten nach +¥.




a<0


geht auf beiden Seiten nach -¥

ungeradzahlig


a<0


geht links nach +¥ und rechts nach -¥




a>0


geht links nach -¥ und rechts nach +¥


2.1.1.2 Gebrochenrationale Funktionen
2.1.1.2.1 Allgemeine Gebrochenrationale Funktionen

Bei einer gebrochenrationalen Funktion wird eine Polynom-Funktion Z(x) durch eine andere Polynom-Funktion N(x) dividiert[20]:





Gebrochenrationale Funktionen sind überall dort definiert, wo N(x)¹0 (anderfalls liegt die unerlaubte Division durch Null vor!). Die Definitionsmenge ist Â, vermindert um die Nullstellen der Nennerfunktion N(x). Innerhalb der Definitionsmenge sind gebrochenrationale Funktionen stetig.



G

Gebrochenrationale Funktionen sind an den Stellen N(x)=0 nicht definiert!



Wir unterscheiden drei Fälle:

a) Z(x)=0, aber N(x)¹0. Hier liegt eine Nullstelle der Funktion f(x) vor. Die Nullstellen der Zählerfunktion Z(x) sind die Nullstellen der Funktion f(x).[21]

b) Z(x)¹0, aber N(x)=0. Hier liegen Polstellen vor, d.h. der Graph wandert an beiden Seiten der Polstelle nach plus oder minus Unendlich (dies ist leicht erklärbar, denn je kleiner der Nenner wird, desto größer wird der Bruch). Die betreffenden x-Werte werden mit xp bezeichnet. Die senkrechten Geraden, die durch xp1 ,xp2, … gehen, sind vertikale Asymptoten (vgl. Abbildung 1-6). Für die Bestimmung der Polstellen reicht also die Bestimmung der Nullstellen des Nennerpolynoms.

c) Z(x)=0 und N(x)=0. Hier tritt ein “Loch” (bzw. eine Lücke) im Graphen von f(x) auf, z.B. bei der Funktion . Für alle xÎR\{-2} läßt sich diese Funktion auf (x+2) kürzen. Für x=-2 erhält man die Division von Null durch Null! x+2 ist aber eindeutig eine lineare Funktion. So zeichnet man denn auch diese Gerade und läßt an der Stelle x=2 ein Loch im Graphen, da dieser Funktionswert nicht definiert ist. Hier spricht man von einer hebbaren Definitionslücke[22] (siehe Abbildung 2-12). Entsprechend ist auch der Grenzwert für x=2 existent, der Graph nähert sich von beiden Seiten an y=0 an: . Da der Funktionswert f(2) nicht definiert ist, ist die Funktion bei x=2 nicht stetig.



Abbildung 2-2 Funktion mit hebbarer Lücke

Man unterscheidet die gebrochenrationalen Funktionen in echt und unecht gebrochene. Ist der größte Exponent von Z(x) gleich m und der größte Exponent von N(x) gleich n, dann gilt:

a) echt gebrochen ist eine gebrochenrationale Funktion, wenn m
b) unecht gebrochen, wenn m³n, z.B. . Bei den unecht gebrochenen Funktionen lassen sich ganzzahlig Vielfache herausdividieren (durch Polynomdivision mit Rest): .[24]



Die horizontalen Asymptoten der gebrochenrationalen Funktionen ergeben sich wie folgt:



a) m
b) m=n: Entscheidend sind die Koeffizienten im größten Glied von Z(x) und N(x): ist am der Koeffizient im Glied amxm (der Funktion Z(x)) und bn der Koeffizient im Glied bnxn (der Funktion N(x)), so nähert sich der Graph der horizontalen Asymptote an, z.B. . Diese Funktion hat zwei vertikale Asymptoten bei xp1/p2=±2. Die horizontale Asymptote ist y=2, da (Abbildung 1-5).

c) m>n: Für die Funktionswerte des Graphen gilt y®±¥, wenn x®±¥. Durch Polynomdivision läßt sich der ganzzahlige Anteil der Funktion herausdividieren, so daß eine genauere Aussage über das Verhalten möglich ist. Dieser ganzzahlige Anteil entspricht der Asymptote, der sich der Graph für x®±¥ annähert; denn der echt gebrochene Rest geht dann gegen Null, z.B. . Diese Funktion nähert sich also für x®±¥ der Normalparabel y=x2 an, während der Ausdruck gegen Null strebt. Für m=n+1 hat der Graph eine schiefe Asymptote: die Funktion hat die Asymptote y=x, da nach dem Herausziehen des ganzzahlig Vielfachen die Funktionsgleichung wie folgt lautet:[25]


2.1.1.2.2 Hyperbeln oder Potenzfunktionen mit ganzzahligem negativen Exponenten

Besonders häufig sind gebrochenrationale Funktionen mit Z(x)=k (z.B. k=1) und N(x)=ax+b: . Sie haben genau eine Polstelle bei , die sich aus N(x)=0 ergibt.[26]

Abbildung 2-3 Hyperbelfunktionen



Tabelle 3 Eigenschaften der Potenzfunktion y=xn mit n<0 (Hyperbeln)

Exponent


Gerade (n=2m)


Ungerade (n=2m+1)

Definitionsbereich


xÎÂ\{0}


xÎÂ\{0}

Wertebereich


yÎ(0;¥)


yÎÂ\{0}

Symmetrie


gerade Funktion


ungerade Funktion

Stetigkeit


unstetig bei x=0


unstetig bei x=0

Monoton fallend für


xÎ(0;¥)


xÎÂ\{0}

Monoton steigend für


xÎ(-¥;0)


– – – – – –

Gemeinsame Punkte


P2(-1;1)

P1(1;1)


P1(1;1)

P3(-1;-1)

Asymptoten


x-Achse

y-Achse


x-Achse

y-Achse



Beispiel: Diese Funktion stellt graphisch eine Hyperbel dar, die allgemein als f(x)=1/(xn) mit nÎN definiert sind.



G

1/x ist eine Hyperbel ersten Grades, 1/x2 eine Hyperbel zweiten Grades usw. Ist n gerade, so ist auch die Hyperbel gerade, anderenfalls ungerade (Abbildung 2-3b-c).


2.1.2 Irrationale Funktionen
2.1.2.1 Wurzelfunktionen
2.1.2.1.1 Quadratwurzelfunktionen

Quadratwurzelfunktionen sind allgemein definiert als . Wir betrachten zuerst den einfachen Fall n=1. Dann wird jedem x diejenige positive Zahl zugeordnet, die mit sich selbst multipliziert x ergibt. So wird z.B. dem Wert x=4 der Wert y=|2| zugeordnet. In der Praxis ergibt sich dann nach Auflösen der Betragsstriche die doppelte Lösung y=±2. Dieses Problem zeigt sich auch, wenn wir die Quadratwurzelfunktionen als Umkehrfunktionen der quadratischen Funktionen bilden:



ist die Umkehrfunktion zu g(x)=x2 mit xÎÂ.

mit (x-c)>0 ist die Umkehrfunktion zu k(x)=(x-b)2+c.



g(x) und k(x) sind quadratische Funktionen und stellen im Koordinatensystem Parabeln dar. Diese Parabeln sind weder streng monoton fallend noch steigend, demzufolge auch nicht eindeutig umkehrbar (jedem y-Wert wird nicht nur ein x-Wert zugeordnet). So nimmt g(x) z.B. als y-Wert 4 für x=-2 oder x=+2 an (s.o.). Die Umkehrung darf jedoch nicht zweideutig sein, wenn es sich um eine Funktion handeln soll. Deshalb werden Quadratwurzelfunktionen meist als positiver Teilast definiert, d.h. bei der Normalquadratwurzel () werden den x-Werten nur die positiven Lösungen (s.o.) zugeordnet. In anderen Worten: die zu invertierende quadratische Funktion g(x)=x2 wurde nur für den streng monoton wachsenden Teilbereich [0;+¥) definiert (Abbildung 2-4).



Bei einer anderen Quadratwurzelfunktion k(x) wird der Teilast, der oberhalb des Scheitelpunktes ist, als Definitionsmenge festgelegt. Anders ausgedrückt: es wird wieder nur das streng monoton wachsende Intervall als Dk definiert.





Beispiel:

Die Funktion[27] ist die Umkehrfunktion zu f(x)=x2+2. f(x) ist eine Parabel. Wir definieren das Monotonieinterval [2;+¥), das dann die Wertemenge von g(x) bildet. g(x) ist für alle xÎÂ mit x³2 definiert und stetig (s.u.), und zwar fär die jeweils positive Lösung der Wurzel, also der Teilast, der von [2;0) (dem Scheitelpunkt) aus nach oben wandert und durch die Punkte (3;1), (6;2) usw. geht (Abbildung 2-4d-f).



Quadratwurzelfunktionen sind nur für positive Radikanden definiert, d.h. die Definitionsmenge muß so gewählt werden, daß der Radikand ³ 0 ist, denn jede reelle Zahl ergibt mit sich selbst multipliziert wieder eine positive Zahl. Im Definitionsbereich sind Quadratwurzelfunktionen stetig.



Abbildung 2-4 Potenz- und Wurzelfunktionen
2.1.2.1.2 Kubikwurzelfunktionen

Kubikwurzelfunktionen sind definiert als . Sie sind für ganz  definiert und stetig. Denn die Kubikwurzel ist im Gegensatz zur Quadratwurzel für positive und negative Werte definiert: 23=8 und (‑2)3=-8 (Abbildung 2-4g).


2.2 Transzendente Funktionen

T

ranszendent sind alle Funktionen, die sich nicht durch algebraische Gleichungen ausdrücken lassen.
2.2.1 Winkel-, Kreis,- oder Trigonometrische Funktionen

Dies sind die Funktionen sin x, cos x, tan x, cot x (Sinus, Kosinus, Tangens und Kotangens)[28] (Abbildung 2-7). Diese Funktionen[29] beruhen alle auf dem rechtwinkligen Dreieck. Dort gibt es drei Winkel (a, b, g), die Hypotenuse c (die dem rechten Winkel gegenüberliegende Seite des Dreiecks) und die zwei Katheten a und b. Letztere werden noch einmal unterteilt in Ankathete (die dem Winkel a anliegende Kathete) und die Gegenkathete (die dem Winkel gegenüberliegende Kathete) (Abbildung 2-5).



Abbildung 2-5 Bezeichnungen im rechtwinkligen Dreieck







Abbildung 2-6 Allgemeine Darstellung der trigonometrische Funktionen





a)

b)

c)

d)

Abbildung 2-7 Trigonometrische Funktionen im Einheitskreis

a) Sinus; b) Cosinus; c) Tangens; d) Kotangens



Zeichnet man diese Funktionen vom Einheitskreis[30] ausgehend, wodurch beliebige Winkelgrößen möglich werden, so erhält man einen periodischen Verlauf (vgl. Abbildung 2-7 bzw Abbildung 2-6): Sinus und Kosinus sind für 2p (bzw. 360°), Tangens ist für p (bzw. 180°) periodisch. Das bedeutet mathematisch ausgedrückt:



sin(x+2kp)=sinx, kÎZ

cos(x+2kp)=cosx, kÎZ

tan(x+kp)=tanx, kÎZ



Gewöhnlich wird der Winkel im Bogenmaß, also in Einheiten von p, gerechnet, so daß statt des Winkels a die Variable x verwendet wird, und die trigonometrischen Funktionen auch für Bereiche außerhalb des rechtwinkligen Dreiecks benutzt werden können, wo sie ja auch auftreten (elektrischer Strom, Wirtschaftswachstum, sonstige Zyklen). Definitionsmenge von Sinus und Kosinus ist Â. Die Wertemenge ist W={y|-1


Einige Sinus- und Cosinus-Werte lassen sich relativ einfach merken, da eine einfache Systematik zugrundeliegt, wenn die Wurzelschreibweise gewählt wird:



Tabelle 4 Zusammenstellung bestimmter Winkelwerte

x


sin(x)


cos(x)






30°‘p/6


=


45°‘p/4




60°‘p/3




=

90°‘p/2






Ebenso einfach kann man sich die Beziehungen zwischen den einzelnen trigonometrischen Funktionen herleiten:



Tabelle 5 Umrechnung zwischen den einzelnen trigonometrischen Funktionen

gegeben ð

gesucht Ê


sin a


cos a


tan a


cot a

sin a =


sin a






cos a =




cos a




tan a =






tan a


cot a =








cot a


2.2.2 Arcus-Funktionen[31]

Dies sind die Umkehrfunktionen der trigonometrischen Funktionen: arcsin x, arccos x usw. Und zwar wird einem Seitenverhältnis ein Winkel zugeordnet (bei den Winkelfunktionen war es genau umgekehrt!). Da die trigonometrischen Funktionen periodisch sind, sind sie nicht eindeutig umkehrbar. Deshalb werden die Umkehrfunktionen auch nur für einen streng monotonen Teilbereich der Kreisfunktionen definiert. Der ist für sin x und tan x:, für cos x und cot x: I=[0;p] (Abbildung 2-8).

Abbildung 2-8 Die trigonometrischen Umkehrfunktionen



Die Definitionsmengen für die einzelnen Funktionen lauten:

arcsin x und arccos x: D={x|-1
arctan x und arccot x: D={x|-¥


Für die Wertemengen gilt:

arcsin x und arctan x: W={y|-p/2
arccos x und arccot x: W={y|0


Werden Lösungen für diese Funktionen angegeben, so werden die aus der Wertemenge berücksichtigt, also für arcsin 1=p/2, aber für arcsin(-1)=-p/2 und nicht der Wert 3/2p, da er außerhalb der Wertemenge liegt. Den richtigen Wert liefert auch der Taschenrechner, indem man das Seitenverhältnis, hier also “-1” eintippt und INV-SIN drückt. Je nach Stellung der DRG-Taste erscheint nun -90° (Stellung auf DEG[32]) oder -1,570797…‘-p/2 (Stellung auf RAD[33]).



G

Für die trigonometrischen Funktionen gelten folgende Symmetrieeigenschaften:

a) sin x=sin(p-x)

cos x=cos(2p-x)

b) sin x ist ursprungssymmetrisch: sin(-x)=-sin(x)

cos x ist y-Achsensymmetrisch: cos(-x)=cos(x).

Abbildung 2-9 Darstellung der Basislösungen



Daher findet man zu jedem Wert (außer -1 und 1) zwei Basislösungen (Abbildung 2-9b).



Beispiele:

Die Basislösungen für sin x=1/2 {entspricht x=arcsin(1/2)} sind x=p/6 und x’=p-x=5/6p; die Basislösungen für cos x=1/2 {entspricht x=arccos(1/2} sind x=p/3 und x’=-p/3. Vergleiche dazu auch die Abbildung 2-9;



Möchte man alle möglichen Lösungen angeben, so ermittelt man die Lösung aus der Wertemenge, bildet die zweite Basislösung, also x‘, und addiert dann zu beiden 2kp für Sinus und Kosinus, kp für Tangens, kÎZ.





Beispiele:

a) Für sin x=1 (bzw. x=arcsin 1) folgt, daß der Sinuswert gleich 1 ist, wenn x =p/2. Die vollständige Lösung lautet dann x=p/2+2kp, kÎZ. Denn 1=sin(p/2)=sin(5/2p)=sin(9/2p)=… (Abbildung 2-9).

b) Für cos x=0 (bzw. x=arccos 0) folgt, daß der Kosinuswert gleich 0 ist, wenn x=p/2 (Funktionswert der Arcusfunktion). Die zweite Basislösung lautet x’=-p/2 (d.h. -x=x‘). Die vollständige Lösung ist nun: x=p/2+2kp v x=-p/2+2kp, kÎZ (Abbildung 2-9).


2.2.3 Exponential-, Logarithmus und Hyperbelfunktionen
2.2.3.1 Exponentialfunktionen

Exponentialfunktionen sind definiert als f(x)=ax, aÎÂ+\{1}. Definitionsmenge ist Â. Als Wertemenge ergibt sich Â+. Die Funktionen sind stetig und streng monoton.



G

Ist die Basis a<1 , so ist f(x)=ax streng monoton fallend, ist a>1, dann ist f(x)=ax streng monoton steigend (Abbildung 2-11).

Alle Exponentialfunktionen gehen durch den Punkt [0;1], denn jede Basis potenziert mit der Zahl Null ergibt nach Definition Eins (Abbildung 2-10).



Abbildung 2-10 Exponentialfunktionen



Häufig wird als Basis die Eulersche Zahl e genommen. Sie hat vor allem in der Naturwissenschaft eine große Bedeutung. Diese Exponentialfunktion heißt daher natürliche Exponentialfunktion: f(x)=ex (Abbildung 2-10c). Grundsätzlich gilt jedoch. daß sich jede Potenz der einen Basis in eine mit einer anderen Basis umrechnen läßt:


2.2.3.2 Logarithmusfunktionen

Logarithmusfunktionen sind die Umkehrfunktionen zu den Exponentialfunktionen und definiert als f(x)=loga x (Logarithmus von x zur Basis a)[34]; aÎÂ+\{1}. Jedem x wird die Zahl zugeordnet, mit der a potenziert x ergibt. D.h. log10100=2, da 102=100! Die Definitionsmenge ist Â+, die Wertemenge ist Â. Zwischen Logarithmus- und Exponentialdarstellung gilt folgende Äquivalenz[35]





Abbildung 2-11 Logarithmusfunktionen

Logarithmusfunktionen sind streng monoton und zwar fallend für a<1 und monoton steigend für a>1 (Abbildung 2-11). Es gibt häufig gebrauchte Basen, nämlich 2 (Dualsystem), die “natürliche Basis” e und 10 (Dezimalsystem).[36]



G

Alle Logarithmusfunktionen gehen durch den Punkt P(1;0) (Abbildung 2-11).

Die Funktionalgleichung der Logarithmusfunktionen lautet: log(x1·x2)=log x1+log x2 und somit f(x1·x2)=f(x1)+f(x2).

f(x)=logax und g(x)=log1/ax liegen symmetrisch zur x-Achse (Abbildung 2-11e).


2.2.3.3 Hyperbolische Funktionen

Die Funktionen Hyperbolischer Sinus[37], Hyperbolischer Kosinus usw. (sinh x, cosh x usw.) sind für unser Schulwissen nicht relevant, dafür um so mehr im naturwissenschaftlichen Bereich. Sie werden mit Hilfe von Exponentialfunktionen zur Basis e definiert:





Die anderen Funktionen (tanh x, coth x, usw.) bilden sich wie bei den normalen trigonometrischen Funktionen. Auf ihre Anwendungen, ihre Graphen und ihre Umkehrfunktionen braucht hier nicht weiter eingegangen werden.


2.3 Verknüpfte Funktionen

M

an kann Funktionen zu Summen, Differenzen, Produkte und Quotienten verknüpfen und so neue Funktionen bilden. Ist z.B. f(x)= 2x-3 und g(x)=x2+1, so erhalten wir:




2.4 Verkettete Funktionen

D

ie Funktion f(x) einer Funktion g(x) wird bezeichnet als f(g(x))=(f°g)(x). f ist die äußere und g die innere Funktion. Ist f(x)=x2 und g(x)=sinx so ist (f°g)(x)=sin2x.



Achtung! f°g ist nicht das gleiche wie g°f! Das wäre nämlich in obigem Beispiel (g°f)(x)=sin(x2)!


2.5 Elementare Funktionen

A

ls elementar werden alle Funktionen bezeichnet, die aus einer endlichen Anzahl von Verknüpfungen und Verkettungen aus transzendenten und algebraischen Funktionen bestehen. Dabei muß die Funktionsgleichung für die ganze Definitionsmenge gleich sein, die Funktionsgleichung also geschlossen, d.h. aus einer Gleichung bestehen. Alle bisher besprochenen Funktionen sind elementar.



Abbildung 2-12 Nicht-elementare Funktionen; a) Betragsfunktion; b) Gaußklammerfunktion; c) Signumfunktion
2.6 Nicht-Elementare Funktionen

E

ine häufig angewendete, nicht-elementare Funktion ist die sogenannte Betragsfunktion: f(x)=|x| (Abbildung 2-12a). Diese Funktion besteht praktisch aus zwei elementaren Funktionen auf zwei verschiedenen Intervallen:





Zwei weitere ähnliche nicht-elementare Funktionen sind die Signumfunktion f(x)=sgn(x) und die Gaußklammerfunktion f(x)=[x].



Signum (x) ordnet einem negativem x den Wert ‑1, einem positivem x den Wert +1 und dem x‑Wert Null den y-Wert Null zu. Diese Funktion wird z.B. benötigt, wenn man nur das Vorzeichen eines Wertes braucht. Die Betragsfunktion läßt sich mit Hilfe der Signumfunktion einfach definieren als f(x)=x×sgn(x) definieren.[38]



Die Gaußklammer ordnet x die größte ganze Zahl zu, die nicht größer ist als x. Ein Beispiel für die Anwendung dieser Funktion ist die Gebührenberechnung beim Telefonieren. Nach einer bestimmten Zeiteinheit springt die Rechnung eine Gebühr höher. Ist z.B. eine Einheit 8 Minuten, so zahlt man für ein Drei-Minutengespräch genauso viel wie für ein 7 Minutengespräch, für ein 9 Minutengespräch hingegen bereits das Doppelte.

Abbildung 2-13 Verschiebung eines Graphen



Da diese beiden Funktionen wie die hyperbolischen nur für den erweiterten Mathematikunterricht wichtig sind, folgen an dieser Stelle keine weiteren Erklärungen! Lediglich die Graphen der Funktionen sind in Abbildung 2-12 dargestellt.


3 Funktionsveränderungen

E

s gibt einfache Methoden, die Graphen von “normalen” Funktionen aus dem vorhergehenden Kapitel zu verändern. Dazu gehören insbesondere das Strecken, Stauchen, Spiegeln und Schieben.
3.1 Die vertikale Verschiebung

D

iese kann anschaulich auch als “Fahrstuhleffekt” bezeichnet werden; denn der Graph von f(x) wird mit Hilfe einer zusätzlichen additiven Konstante C nach oben bzw. nach unten (C negativ) verschoben, d.h. in y-Richtung. Die um C nach oben verschobene Funktion g(x) lautet dann: g(x)=f(x)+C. Diese Schreibweise ist allgemein üblich, verkennt jedoch, daß die Konstante C ausschließlich auf die Variable y Einfluß hat, so daß folgende Schreibweise für das Verständnis sinnvoller wäre: g(x)-C=f(x).



Abbildung 3-1 Spiegelung an der x-Achse

Man könnte “C” anschaulich mit einem Fahrstuhl verglei­chen, der die Ausgangsfunktion mit C=0 in einem Hotel (das Koordinatensystem) hinauf und hinunter fährt. Dabei verändert sich das allgemeine Verhalten des Graphen in den einzelnen Punkten nicht.


3.2 Die horizontale Verschiebung

D

iese Verschiebung kann anschaulich als “Zimmernum­mereffekt” bezeichnet werden, denn der Graph von f(x) wird in x-Richtung verschoben, indem alle x in der Funktionsgleichung durch (x-a) ersetzt werden. Der Graph wird dann um a nach rechts verschoben (a>0) bzw. nach links verschoben (a<0). Anders ausgedrückt: bei z.B. (x-3) wird der Graph nach rechts verschoben, bei (x+3) nach links.) Die um a nach rechts verschobene Funktion g(x) lautet: g(x)=f(x-a). In unserem anschaulichen Hotelvergleich wäre a dann die Zimmernummer auf derselben Etage.


3.3 Spiegelung an den Koordinatenachsen

A

n der x-Achse gespiegelt wird der Graph ganz einfach durch einen Vorzeichenwechsel der jeweiligen Funktionswerte (Abbildung 3-1):



g(x)=-f(x). Z.B. f(x)=x2 und g(x)=-x2 .



Der Graph kann natürlich auch an der y-Achse gespiegelt werden: g(x)=f(‑x). Z.B. f(x)=x3 und g(x)=(-x)3 (Abbildung 3-1).


3.4 Streckung und Stauchung

E

s gibt die Möglichkeit einen Funktionsgraphen in y-Richtung (von der x-Achse aus) und in x-Richtung (von der y-Achse aus) zu verändern. Dabei wird zwischen Strecken (Auseinanderziehen) und Stauchen (Zusammenschieben) unterschieden.


3.4.1 Streckung oder Stauchung in Richtung der y-Achse

Eine solche Veränderung geht immer von der x-Achse aus, und zwar nach oben wie unten. Erreicht wird dies in Richtung der y-Achse durch einen Faktor a vor der Funktionsgleichung: h1(x)=a×f(x).



G

Der Graph wird in Richtung der y-Achse gestreckt, wenn |a|>1 ist. Er wird gestaucht, wenn |a|<1 ist. Ist a negativ, so findet zusätzlich eine Spiegelung an der x-Achse statt (Abbildung 3-2).

Abbildung 3-2 Streckung und Stauchung von Funktionen


3.4.2 Streckung und Stauchung in Richtung der x-Achse

Eine Konstante k vor allen x streckt oder staucht den Funktionsgraphen in Richtung der x-Achse von der y-Achse aus nach rechts und links: h2(x)=f(k x).



G

Der Graph wird in Richtung der x-Achse gestreckt, wenn |k|>1. Der Graph wird gestaucht, wenn |k|<1 ist. Ist k negativ, so findet wieder zusätzlich eine Spiegelung an der y-Achse statt.



Abbildung 3-3 Strecken und Stauchen bei Sinusfunktionen
3.5 Beispiele
3.5.1 Normalparabel

Sehr schön läßt sich das Schieben und Strecken an der Normalparabel zeigen. Es ist bekanntlich möglich, jede beliebige quadratische Funktion mit dem führenden Koeffizienten 1 (also die Normalform x2+px+q) auf die Normalparabel zurückzuführen, womit der Graph dann einfach zu zeichnen ist. f(x)=x2 ist die Funktionsgleichung der Normalparabel (Abbildung 2-4a). Wird dieser Graph in y-Richtung verschoben, so gilt: g1(x)=x2+c.[39] Der in x-Richtung verschobene Graph hingegen lautet g2(x)=(x-a)2. Der Graph der Funktion g3(x)=(x-a)2+c ist die um a nach rechts und um C nach oben verschobene Normalparabel.[40] Der Scheitelpunkt der Normalparabel liegt bei S(a;c) (Abbildung 3-1). Der Graph jeder quadratischen Funktion in der Normalform ist eine verschobene Normalparabel. Es bedarf geringer algebraischer Umformungen, um die Normalform einer quadratischen Gleichung auf die Scheitelpunktform zu bringen, die der obigen Form entspricht: f(x)-c=(x-a)2. Man bringt die Normalform auf die Scheitelpunktform mit Hilfe einer quadratischen Ergänzung.[41] Bei der Umformung wurde die erste binomische Formel (a+b)2=a2+2ab+b2 angewandt.





Mit einer Normalparabel-Schablone kann jetzt ohne weiteres die Funktion im Koordinatensystem gezeichnet werden!



Beispiele:

f(x)=x2+4x+4. Dies ist ein vollständiges Quadrat, d.h. die binomische Formel kann direkt angewendet werden: f(x)=(x+2)2. Als Scheitelpunkt ergibt sich also S(-2;0).



g(x)=x2+6x+4 ist kein vollständiges Quadrat. In der quadratischen Ergänzung addieren und subtrahieren wir wegen 6x=2·3·x das Quadrat von 3, also 32 bzw. 9. Dies gibt dann x2+2·3·x+32-32+4=(x+3)2-5 Þ g(x)+5=(x+3)2 und daraus folgend S(3;-5).



Mit unserem “Hotelmodell” ergibt sich anschaulich folgende Darstellung:

f(x) ist eine Normalparabel in Zimmer Nummer 2 auf der LINKEN SEITE (da negativ) im ERDGESCHOSS. g(x) (eine Normalparabel) ist in Zimmer Nummer 3 auf der RECHTEN SEITE (da positiv) im fünften UNTERGESCHOSS (da negativ). (Abbildung 2-13c)



In der allgemeinen Form der quadratischen Gleichung muß der führende Koeffizient a nicht notwendigerweise gleich 1 sein (z.B. y=5×2+20x+22). Die Graphen einer solchen Funktion sind allgemeine Parabeln. Sie unterscheiden sich von der Normalparabel dadurch, daß sie breiter oder schmaler (gestaucht oder gestreckt) und/oder sogar nach unten geöffnet sind. Entscheidend hierfür ist besagter führender Koeffizient a:[42]



a>0 Parabel nach oben geöffnet

a<0 Parabel nach unten geöffnet

0<|a|<1 Parabel breiter als Normalparabel

|a|>1 Parabel schmaler als Normalparabel



Man kann nun durch Ausklammern auch eine allgemeine quadratische Funktion auf die

Scheitelpunktform bringen:





Der Koeffizient 5 sagt aus, daß die Parabel schmaler als die Normalparabel sein muß, sie ist also sozusagen dünner (Abbildung 3-2b)[43]. Und zwar geht der Graph, wenn man vom Scheitelpunkt in x-Richtung eine Einheit nach Rechts geht, fünf Einheiten nach oben (in y-Richtung). Allgemein gilt, daß ausgehend vom Scheitelpunkt bei Dx=1 genau Dy=a Einheiten nach oben oder unten (wenn a negativ) zu gehen sind.


3.5.2 Beispiel Sinusfunktion

Auch die Sinus-Funktion ist ein gutes Beispiel für solche Funktionsveränderungen. Am häufigsten sind dabei Amplitudenänderungen, Frequenzänderungen und Phasenänderungen.



Abbildung 3-4 Amplituden-, Frequenz, und Phasenänderung bei einer Sinusfunktion


3.5.2.1 Amplitudenänderungen

Die Amplitude ist die maximale Ausdehnung der Sinusfunktion in y-Richtung. Diese ist von f(x)=sin x bekanntlich gleich 1. Das bedeutet, die Wertemenge ist {y|‑1

3.5.2.2 Frequenzänderungen

Die Periodendauer einer Schwingung bezeichnet, in welchen Abständen sich der Graph der Funktion wiederholt.[44] Die Periode von f(x)=sin x ist 2p. Um die Periode zu ändern, wird das x einfach mit einem Faktor b multipliziert: g2(x)=sin(bx). Die Periode ist dann 2p/b, für y=sin(2x) also gleich p (Abbildung 3-3b). Je größer b wird, desto kleiner wird die Periode. Die Sinuskurve wird schmaler, d.h. der Graph wird in x-Richtung gestaucht. Ist b hingegen kleiner als 1, dann wird die Sinuskurve breiter, d.h. der Graph wird in x-Richtung gestreckt.


3.5.2.3 Horizontale Verschiebung (Phasenänderngen)

Phasenänderungen ändern den Startpunkt der Perioden der Sinusfunktion, anders ausgedrückt, sie verschieben die Sinusfunktion in x-Richtung. Hier gilt das gleiche wie bei allen anderen Funktionen: Die um c in x-Richtung (nach rechts) verschobene Sinusfunktion lautet g3(x)=sin(x-c), z.B. g3(x)=sin(x-p) (Abbildung 3-3c).



Abbildung 3-5 Horizontale Verschiebung (Phasenänderung) einer Sinusfunktion


3.5.2.4 Vertikale Verschiebung (Fahrstuhl)

Natürlich gibt es auch die Verschiebung mit dem “Fahrstuhl”: g4(x)-d=sin x, z.B. g4(x)‑1=sin x (Abbildung 3-4a).


3.5.2.5 Kombination von Strecken und Verschieben

G

Die Funktion f(x)=a sin(bx-c)+d ist die um c/b (siehe unten) nach rechts und um d nach oben verschobene Sinusfunktion mit der Periode 2p/b und der Amplitude a. Die Definitionsmenge ist  und die Wertemenge W={y|-a


Zu beachten ist, daß hier die Verschiebung in x-Richtung nur p/2 beträgt, denn da alle x durch (x-c) ersetzt werden müssen, also beide, denn es heißt ja 2x, steht eigentlich da: . Mit anderen Worten, das “b” muß ausgeklammert werden (Abbildung 3-4b).
3.5.3 Die anderen trigonometrischen Funktionen
3.5.3.1 Tangens und Kotangens

Beim Tangens (und Kotangens) ist die Periode im Gegensatz zur Sinusfunktion nur halb so groß, nämlich p/b. h1(x)=tan(2x) hat dann eine Periode von p/2 (Abbildung 3-6a). Die Wertemenge ist Â, d.h. die Konstante a streckt (wenn größer als 1) bzw. staucht (wenn kleiner als 1) den Graphen in y-Richtung; der Begriff der Amplitude kann hier nicht angewandt werden.



Abbildung 3-6 Strecken und Stauchen bei der Tangensfunktion



Die oben beschriebenen Veränderungen gelten auch für die anderen trigonometrischen Funktionen.


4 Nullstellen

N

Abbildung 4-1 Lage von Nullstellen

ullstellen sind die Punkte, an denen der Graph einer Funktion die x-Achse schneidet oder berührt. Solche Nullstellen sind in der Analysis für das Verständnis von Funktionsverläufen sehr wichtig. Nullstellen werden prinzipiell ermittelt, indem man die Funktionsgleichung gleich Null setzt, denn wenn der Graph die x-Achse schneidet oder berührt, ist der Funktionswert y=f(x)=0. Nullstellen werden mit dem x-Wert angegeben (der y-Wert ist bei einer Nullstelle immer Null). Dieser x-Wert heißt x0 oder xn. Gibt es mehrere Lösungen für 0=f(x), z.B. a, b, c usw., so werden sie mit x0=a v x0=b v x0=c usw.[45] angegeben. Es ist auch möglich die verschiedenen Nullstellen durch xn1, xn2, xn3 usw. zu kennzeichnen.



Die Vielfachheit einer Nullstelle unterscheiden wir nach einfachen und mehrfachen Nullstellen. Hat man zum Beispiel ein Produkt, bei dem mehrere der Faktoren für einen x-Wert x0 sind, so spricht man von einer mehrfachen Nullstelle. Diese Unterscheidung ist deshalb so wichtig, weil sich daraus ergibt, ob der Graph die x-Achse schneidet oder nur berührt.



Bei einfachen und ungeradzahlig mehrfachen (also zum Beispiel dreifachen) Nullstellen, findet ein Vorzeichenwechsel statt; die x-Achse wird geschnitten. Bei geradzahlig mehrfachen Nullstellen (also z.B. doppelten), findet kein Vorzeichenwechsel statt; die x-Achse wird lediglich berührt, z.B f(x)=x2 . Dies ist ein Produkt: x2=x×x. Dadurch daß beide Faktoren in der Umgebung von Null ihr Vorzeichen wechseln, bleibt es immer positiv (oder negativ, falls -x2 vorliegt). Die x-Achse wird also nur berührt, der Graph hat links und rechts von x=0 das gleiche Vorzeichen (Abbildung 4-1). f(x)=x3=x×x×x hat bei x=0 eine dreifache Nullstelle, an x=0 finden also drei Vorzeichenwechsel gleichzeitig statt. Der Graph schneidet wegen der ungeradzahligen Häufigkeit die x-Achse, aus negativen (links von x=0) werden positive (rechts von x=0) Funktionswerte (Abbildung 4-1).


4.1 Rationale Funktionen
4.1.1 Potenzfunktionen mit positiven Exponenten

Ist f(x) eine Potenzfunktion mit positivem Exponenten, z.B. f(x)=axr, rÎÂ+, r¹0, so gibt es genau eine Lösung für f(x)=0, nämlich x0=0.


4.1.2 Allgemeine ganzrationale Funktionen

Eine ganzrationale Funktion hat höchstens so viele Nullstellen, wie hoch ihr Grad ist. Eine ganzrationale Funktion dritten Grades also höchstens drei. Die Nullstellen der Polynom-Funktionen ermittelt man häufig durch faktorisieren. Und zwar ist das durch das Faktorisieren entstehende Produkt immer dann gleich Null, wenn mindestens einer der Faktoren Null ist. Dies bedeutet, um die Nullstellen einer ganzrationalen Funktion ermitteln zu können, müssen wir die Funktionsgleichung solange faktorisieren (falls möglich!), bis wir für jeden einzelnen Faktor erkennen können, wann dieser gleich Null ist.


4.1.2.1 Konstante und Lineare Funktionen

Für die konstanten und linearen Funktionen ist die Nullstellenbestimmung kein Problem, hier reichen einfache Äqivalenzumformungen.



Konstante Funktionen f(x)=k können zwangsweise nur dann Null werden, wenn die Konstante k selbst gleich Null ist. Der Funktionsgraph entspricht dann der x-Achse. Lineare Funktionen werden durch Geradengleichungen beschrieben und können einfach umgestellt werden:

4.1.2.2 Quadratische Funktionen

Um die Nullstelle einer quadratischen Funktion f(x)=ax2+bx+c zu ermitteln, muß man sie erst einmal auf die Normalform bringen, also den Koeffizienten a ausklammern:





Die Normalform der quadratischen Gleichung erfordert zwingend, daß der erste Koeffizient (vor dem x2) gleich +1 lautet! Ist die Normalform ein vollständiges Quadrat (2.1.1.1.2 Allgemeine Ganzrationale Funktionen), so kann man sie zu (x-z)2 faktorisieren und hat genau eine doppelte Nullstelle bei x=z. Ist die Normalform kein vollständiges Quadrat, so muß die sogenannte pq-Formel angewandt werden, die bereits in Kapitel 3.5.1 Normalparabel prinzipiell hergeleitet wurde. Die Anzahl der möglichen reellen Lösungen[46] ergibt sich durch einfache Überlegung. Eine quadratische Gleichung in Parabelform kann die x-Achse entweder gar nicht schneiden (keine Nullstelle), zweimal schneiden (zwei Nullstellen) oder berühren (eine doppelte Nullstelle).[47]



Herleitung der pq-Formel



Wieviele Lösungen es gibt, erfährt man durch die Diskriminante, die dem Radikanden entspricht:



Es gibt drei Möglichkeiten:

a) D>0: Jetzt muß die pq-Formel angewandt werden. Es gibt genau zwei Lösungen.

b) D=0: Die Funktionsgleichung ist ein vollständiges Quadrat. Jetzt gibt es genau eine Lösung. Der Scheitelpunkt des Graphen liegt auf der x-Achse. Die Nullstelle kann mit Hilfe der binomischen Formeln ermittelt werden (s.o.).

c) D<0: Dann gibt es keine Lösung, da wir in der p-q-Formel die Wurzel aus der Diskriminante ziehen werden, und man keine Wurzel aus negativen Zahlen ziehen kann. Der Funktionsgraph befindet sich oberhalb der y-Achse



Beispiele:

f(x)=-x2-6x-5. Da die Nullstellen gesucht sind, folgt 0=-x2-6x-5. Um auf die Normalform zu kommen, wird die Gleichung durch (-1) dividiert! 0=x2+6x+5. Die pq-Formel liefert jetzt folgende Ergebnisse:







Die Funktion selbst hat ihren Scheitelpunkt bei S(-3;4) oberhalb der x-Achse. Da die Parabel jedoch nach unten geöffnet ist, schneiden sehr wohl beide Äste die x-Achse, nämlich bei PN1(-1;0) und PN2(-5;0) (Abbildung 4-1a).



Einen Sonderfall gibt es noch, wenn der Koeffizient b=0 ist, also f(x)=ax2+c. Dann ergeben sich folgende Nullstellen:


4.1.2.3 Funktionen dritten und höheren Grades

Sehr viel schwieriger wird es bei ganzrationalen Funktionen höheren Grades. Hier hilft es meistens nur, die Funktionsgleichung in Faktoren zu zerlegen, die aus quadratischen, linearen oder konstanten Gliedern bestehen. Letzten Endes wird uns nur die Polynomdivision weiterhelfen, dazu brauchen wir aber erst einmal mindestens eine Nullstelle xn1. Dann kann man nämlich die Polynomfunktion durch (x-xn1) teilen. Mögliche ganzzahlige Lösungswerte für f(x)=0 sind auf jeden Fall ganzzahlige Teiler (positiv wie negativ) des konstanten Gliedes (a0). Ist z. B. a0=6, so entstammen ganzzahlige Lösungen der Menge {‑6;‑3;‑2;‑1;1;2;3;6}. Wenn man jetzt alle diese Werte einsetzt, bekommt man unter Umständen eine Nullstelle heraus. Das ist dann der Startwert xn1!



Allgemeine Hinweise zur Vorgehensweise:



a) Meistens ist es praktischer, den führenden Koeffizienten auszuklammern, er beeinflußt danach die Nullstellenberechnung nicht mehr.



b) Hat die Funktionsgleichung kein konstantes Glied, so ist eine Lösung auf jeden Fall x0=0. Dieses x kann dann ausgeklammert werden, z.B.

f(x)=4×3+8×2+4x= 4x(x2+2x+1)=4x(x+1)2.

Die Nullstellen lauten dann xn1=-1 (doppelt, wegen des Quadrats) und xn2=0 (einfach) (Abbildung 4-1b).



c) Manchmal lassen sich Funktionen höheren Grades nach den binomischen Formeln (sogenannte biquadratische Funktionen) zusammenfassen, z.B.

f(x)=x4+2×2+1= (x2+1)2.

Die jeweils doppelten Nullstellen liegen bei x=±1.



d) Funktionen höheren Grades lassen sich manchmal nach polynomischen Formeln faktorisieren. Genannt seien hier die trinomischen Formeln:

(x+a)3=x3+3ax2+3ax2+a3

(x-a)3=x3-3ax2+3a2x-a3

(x+a) (x2-ax+a2)=x3+a3

(x-a) (x2+ax+a2)=x3-a3



e) Manchmal hilft einem auch das Pascalsche Dreieck weiter, mit dem sich die übrigen polynomischen Formeln höheren Grades fortsetzen lassen. Es ist aber schon Glückssache, gerade die Koeffizienten aus dem Pascalschem Zahlendreieck in der Funktionsgleichung zu haben, z.B.

f(x)=x4+4×3+6×2+4x+1=(x+1)4



1 (a+b)0=1

1 1 (a+b)1=a+b

1 2 1 (a+b)2=a2+2ab+b2

1 3 3 1 (a+b)3=a3+3a2b+3ab2+b3

1 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4

1 5 10 10 5 1 (a+b)5=…

1 6 15 20 15 6 1 (a+b)6=…

usw.



f) Wenn keine der oben angegebenen Möglichkeiten in Betracht kommen, müssen numerische Verfahren zur Nullstellenbestimmung angewendet werden!


4.1.3 Gebrochenrationale Funktionen

Die Nullstellen ermitteln sich wie bei den ganzrationalen Funktionen. Entscheidend ist nur der Zähler; ist dieser gleich Null, so ist auch die Funktion für diese x-Werte gleich Null. Es ist jedoch darauf zu achten, daß die Nullstellen Teil der Definitionsmenge, also nicht gleichzeitig Nullstellen des Nennerpolynoms sind!


4.2 Wurzelfunktionen

E

ine Wurzel ist dann gleich Null, wenn der Radikand gleich Null ist. Dies ergibt sich schon aus der Tatsache, daß die Wurzeln bekanntlich Teil der Potenzfunktionen sind:


4.3 Trigonometrische Funktionen

B

ei den “einfachen” trigonometrischen Funktionen lassen sich die Nullstellen ohne Probleme berechnen:

f(x)=sin x: x0=kp, kÎZ (geradzahlige Vielfache von p)

f(x)=cos x: (ungeradzahlig Vielfache von p/2)

f(x)=tan x: x0=kp, kÎZ (geradzahlige Vielfache von p)

Treten die trigonometrischen Funktionen in Kombination mit anderen oder untereinander auf, so müssen meistens mehrere der Formeln für die trigonometrischen Funktionen angewandt werden, die man jeder mathematischen Formelsammlung oder dem Anhang entnehmen kann. Häufig reicht es aber auch, sich zu überlegen, wie der Graph verändert wurde und den Graphen zu zeichnen.


4.4 Exponential- und Logarithmusfunktionen

G

Alle Exponentialfunktionen in der Form f(x)=ax haben keine Nullstelle.

Alle Logarithmusfunktionen der Form f(x)=logax haben die Nullstelle x0=1.



Funktionen, die aus Kombinationen von Exponential- und Logarithmusfunktionen auftreten, sind meistens nur numerischen Verfahren zugänglich!


5 Numerische Verfahren zur Nullstellenbestimmung

D

ie beiden bekanntesten numerischen Verfahren sind das Verfahren nach Newton (Tangentennäherungsverfahren) und die Regula-Falsi (Sekantennäherungsverfahren). Man nennt sie Iterationsverfahren[48], weil sie mit jeweils einem neuen Startwert so lange wiederholt werden, bis sich ein gefundener Wert nur noch geringfügig vom vorherigen unterscheidet. Zuerst wählt man einen grundsätzlich beliebigen Startwert, eine sogenannte Wurzel (am besten geschieht dies nach dem Sturmschen Satz[49]). Dann werden in einer Iteration mit Hilfe von Tangenten bzw. Sekanten immer neue Wurzeln ermittelt, die der tatsächlichen Nullstelle schließlich bis auf die gewünschte Genauigkeit nahe kommen. Diese Iteration kann in einem Hornerschen Schema ausgedrückt werden.



Abbildung 5-1 Numerische Bestimmung von Nullstellen


5.1 Das Verfahren von Newton

F

ür das Newtonsche Verfahren braucht man nur einen Startwert x1. Legt man nun an den Graphen am Punkt P(x1;f(x1)) eine Tangente (Gerade) an, so schneidet sie die x-Achse in größerer Nähe von x0 als x1 (Abbildung 5-1). Einzige Bedingung ist, daß der Funktionswert von x1 und die “Beschleunigung” von f(x1), also f“(x1) das gleiche Vorzeichen haben. Der Ansatz für die Iteration ergibt sich aus Abbildung 5-1:





Der einzige Nachteil des Verfahrens ist, daß bei komplizierten Funktionen nicht unbedingt die erste Ableitung der Funktion bestimmt werden kann.


5.2 Die Regula-Falsi

F

ür das Regula-Falsi-Verfahren werden zwei x-Werte benötigt, zwischen denen jedoch die gesuchte Nullstelle liegen muß[50]. Diese x-Werte seien x1 und x2, dann ist der Näherungswert x3. Der Ansatz ergibt sich wieder einfach aus Abbildung 5-1:





Dieses Verfahren wird solange wiederholt, bis die gewünschte Genauigkeit erreicht ist.


6 Beispiele
6.1 Kurvendiskussion 1

Gegegeben sei folgende Funktion f: x®

1. Maximaler Definitionsbereich: x Î Â, da f(x) eine ganzrationale Funktion.



2. Schnitt- und Berühungspunkte mit den Achsen:

a) y-Achse: Bedingung f(0)=y0 (x muß 0 sein!); y0=0 Þ Py(0;0). Dadurch automatisch auch Schnitt- oder Berührungspunkt mit der x-Achse

b) x-Achse: Begingung f(x0)=0;



x0=0 wegen des Quadrats doppelte Nullstelle, also ein Berührungspunkt, der zugleich ein relatives Extremum sein muß. Aufgrund der Funktionswerte in der Umgebung von x=0 (negative Werte) ergibt sich ein relatives Maximum (Hochpunkt). Der zweite Faktor führt zu:





3. Symmetrien

Punktsymmetrisch zum Ursprung, wenn f(-x)=-f(x)

y-Achsensymmetrisch, wenn f(-x)=f(x)

Da gerade und ungerade Exponenten auftreten, keine Symmetrie.



4. Relative Extrema (Hoch- und Tiefpunkte)

Notwendig ist f´(xE)=0 und hinreichend ein VZW von f´ in einer genügend kleinen Umgebung von xE oder alternativ zum VZW .



Nullsetzen der ersten Ableitung führt zu:





VZW überprüfen:

4. Wendepunkte:

Notwendig ist und hinreichend wieder ein VZW bzw. (Hier sollen Wendepunkte nicht auf ihre Existenz untersucht werden!)





5. Sämtliche angegebenen Punkte mit den entsprechenden Koordinaten eintragen (keine Wertetabelle):



6.2 Kurvendiskussion 2

Gegegeben sei folgende Funktion f: x®

1. Maximaler Definitionsbereich: die Funktion ist dort nicht definiert, wo die Nullstellen des Nenners liegen Þ x Î Â, da der Nenner nicht Null werden kann (nach oben verschobene Normalparabel – “Fahrstuhl”).



2. Schnitt- und Berühungspunkte mit den Achsen:

a) y-Achse: Bedingung f(0)=y0 (x muß 0 sein!); y0=-1 Þ Py(0;-1)

b) x-Achse: Begingung f(x0)=0; Nullstellen eines Quotienten entsprechen den Nullstellen des Zählers, wenn der Nenner an diesen Stellen ungleich Null ist (sonst Lücke!):





3. Polstellen

Die Polstellen sind die Nullstellen des Nenners (Definitionslücken), wenn der Zähler nicht gleichzeitig Null wird (sonst Lücke). f(x) hat keine Polstellen (siehe oben).



4. Symmetrien

Punktsymmetrisch zum Ursprung, wenn f(-x)=-f(x)

y-Achsensymmetrisch, wenn f(-x)=f(x)

Da nur geradzahlige Exponenten auftreten, ist f(x) y-Achsensymmetrisch.



5. Asymptoten

Zerlegung der Funktion in einen ganzrationalen und einen echtgebrochen-rationalen Teil durch Polynomdivision:



A(x)=1





6. Relative Extrema (Hoch- und Tiefpunkte)

Notwendig ist f’(xE)=0 und hinreichend ein VZW von f’ in einer genügend kleinen Umgebung von xE oder alternativ zum VZW .



Quotientenregel anwenden!



1. Ableitung gleich Null setzen: 4xE=0 Þ xE=0

2. VZW überprüfen:



VZW von – nach +: rel. Tiefpunkt PT(0;-1)

Alternative Überprüfung durch f“(x): f“(0)>0 Þ rel. Tiefpunkt.



7. Wendepunkte

Notwendig ist und hinreichend wieder ein VZW bzw. (Hier sollen Wendepunkte nicht auf ihre Existenz untersucht werden!)





Nur kann Lösung für Erna2 sein:





8. Sämtliche angegebenen Punkte mit den entsprechenden Koordinaten eintragen (keine Wertetabelle):

6.3 Flächenberechnung

Aufgabe: Bestimmen Sie den Inhalt der Fläche zwischen den Graphen von f, g und h![51]



1. Skizze erstellen:

Entsprechend der Aufgabenstellung soll die Fläche von den drei Funktionen begrenzt sein. Daraus folgt dann, daß zwei verschiedene Flächen möglich sind, A1 und A2. Diese Flächen müssen getrennt betrachtet werden, denn A=A1+A2 wird nur von zwei Flächen begrenzt! Aus der Skizze sind die zu berechnenden Schnittpunkte ersichtlich. Diese müssen berechnet werden, obwohl sie aus der Skizze als ganzzahlige x-Werte zu entnehmen sind!



2. Schnittpunkte bestimmen:

a) zwischen f(x) und g(x):

Ansatz:





b) zwischen f(x) und h(x)





c) zwischen g(x) und h(x)







3. Intervallweise Integration:



7 Formelsammlung
7.1 Potenzen

7.2 Wurzeln[52]

7.3 Binomische Formeln

1.

2.

3.
7.4 pq-Formel

Gegeben sei die quadratische Gleichung in Normalform[53]: . Dann ergeben sich für x folgende Lösungen: .
7.5 Winkelfunktionen (Additionstheoreme)

(x im Bogenmaß und a im Gradmaß)[54]

sin(-a)=-sina (Punktsymmetrie)

cos(-a)=cosa (Achsensymmetrie)

bzw.

bzw.

(Pythagoras in Winkelform)



x


sin(x)


cos(x)








30°‘p/6


=


45°‘p/4




60°‘p/3




=

90°‘p/2
<

Der Autor hat leider keine Quellen genannt.

Direktor Schulnote.de

Anna

Autor dieses Referates

Mathematik
Schulfach

0 .
Klasse - angegeben vom Autor
0 ,0
Note - angebenem vom Autor


0,00

Note 6Note 5Note 4Note 3Note 2Note 1
Welche Note gibst Du?

Loading…
0
Aufrufe deses Referates
0
lesen gerade dieses Referat

TCP IP-Protokolle und Dienste
Edward Albee
Milben
Mitochondrien
Viren
AIDS Aufbau des HIVirus
Erkenntnisse über AIDS
Was ist AIDS
Alkohol und der Mensch
Aufbau und Wachstum Bakterien
Darstellung verschiedener Sehsysteme
Termiten – Isoptera
Das Auge
Natürliche Zuchtwahl
Funktion des Gehörsinnes
Das menschliche Gehirn
Der Gedanke der Urzeugung
Diabetes Zuckerkrankheit
Die Tropen
Dinosaurier
Elektrosmog
Gentechnik in der Landwirtschaft
Hormone
Parthenogenese
Anatomie des Kehlkopfes
Kommunikation von Bakterien
Konrad Lorenz Verhaltensforscher
Entstehung von Krebs
Ökosysteme in der Tiefsee
Parasitismus
Beschreibung einzelner Parasitenarten
Pest im Mittelalter
Photosynthese
Heroin
Ringelwürmer
Gentechnologie Grundlagen
Alternative Landwirtschaft
Die Medizin im antiken Rom
Der Traum und die Traumpsychologie
Die chemische Bindung
Bohrsches Atommodell
Brom Eigenschaften
Halogene
Der pH-Wert – pH Messtechnik
Chemische Schädlingsbekämpfung
Atomvorstellungen
Benzin
Fettverseifung
Kalk
Natronlauge Sodaherstellung
Grundlagen der Nuklearphysik
Fotographie
Entdeckung des Atoms
Gegenwartsliteratur der Mythos
Das Ikosaeder
Parallele Programmabläufe
Burleske
Alfred Andersch Literaturbesprechung
Besuch der alten Dame
Biographie Erich Kästners
Friedrich Dürrenmatt Literaturbespr…
Georg Büchner Literaturbesprech…
Wolfgang Borchert Literaturbesprechung
Bertolt Brecht Literaturbesprechung
Friedrich Hebbel Literaturbesprechung
Biographie Johann Nepomuk Nestroy
Ernst Theodor Amadeus Hoffmann Liter…
Max Frisch Literaturbesprechung
Die Blechtrommel
Die Bürger von Calais
Carmen Literaturbesprechung
Das Cafe der toten Philosophen
Eichendorff-Marmorbild
Das Tagebuch der Anne Frank Lietratu…
Demian
Der abenteuerliche Simplicissimus
Der Begriff Heimat
Der einsame Weg
Der Name der Rose – Umberto Ecos
Der Realismus
Der Talisman
Georg Büchner Dantons Tod
Deutsche Satire – Vertreter
Die Angst des Tormannes vor dem Elfm…
Die letzten Kinder von Schewenborn
Die Schwarze Spinne
Das Leben des Galilei – Brecht
Draußen vor der Tür
Effi Briest
Emil Kolb
Emil Erich Kästner
Expressionismus
Friedrich Dürrenmatt – Der Verdacht
Ferdinand Raimund
Die Feuerprobe
Fräulein Else
Frauenliteratur
Frühlings Erwachen Literaturbesprec…
The Good Earth
Gegenströmungen zum Naturalismus
Generationenkonflikt in der Literatur
Nicht alles gefallen lassen
Egmont
Goethe als Wissenschaftler
Franz Grillparzer
Hackl Erich
Heinrich Heine
Hermann Hesse Jugend
Homo Faber – Der Steppenwolf
Hugo von Hofmannsthal
Heinrich von Kleist
Henrik Ibsen
Ich bin ein Kumpel
Die Insel des vorigen Tages
Kafka Literaturverzeichnis
Franz Kafka – Das Schloss
Biographie von Franz Kafka
Klassik Literaturbesprechung
Lange Schatten
Gotthold Ephraim Lessing
Liebelei
Literatur der Arbeitswelt
Zeitkritische Literatur im 1. Weltkr…
Literaturmappe Gottfried Keller und …
Biedermeier
Johann Wolfgang von Goethe
Hermann Hesse
Max Frisch Biografie
Analyse Monolog von Faust
Trostlose Monotonie eines Arbeitsall…
Nathan der Weise – Die neuen Leiden…
Neue Sachlichkeit
Nicht nur zur Weihnachtszeit
Ödön von Horvath
Peter Handke
Peter Schlemihls wundersame Reise
Der Prozeß – Franz Kafka
Goerge Orwell 1984
Romantik
Romantik 1795-1835
Friedrich Schiller
Friedrich Torberg – der Schüler
Spielplatz der Helden
Sturm und Drang
Katherine Mansfield: The Dolls House…
Kurt Tucholsky
Unterm Rad von Hemann Hesse
Zukunftsvisionen – Utopien
Vergangenheitsbewältigung
Von Mäusen und Menschen
Vormärz, Junges Deutschland
Richard Wagner
Weh dem der lügt
Bürgerlicher Realismus
1984 – Orwell
Reise um die Erde in 80 Tagen
Maturavorbereitung – Deutsch
Wiener Aktionismus
Analyse rhetorischer Texte
Antike
Arthur Schnitzler Werke
Die Aufklärung
Bertolt Brecht Biographie
Heinrich Böll
Macht der Boulevardpresse
Brennendes Geheimnis
Chagall Biografie und Werke
Mutter Courage und ihre Kinder
Wiener Biedermeier
Datenautobahn
Der Kriminalroman
Die Ehe des Herrn Mississippi
Die Globalisierung
Ilse Aichinger – Die größere Hoffn…
Die Judenbuche – Annette von Droste-…
Die Rolandsage
Dshamilja Tschingis Aitmatow
Friedrich Dürrenmatt Lebenslauf
Dürrenmatt und die Komödie
Die Eisenbahn
Der Expressionismus
Werner Bergengruen – Die Feuerprobe
Franz Kafkas Lebenslauf
Frühlingserwachen von Frank Wedekind
Geschichte des Internets
Die Presse und das Pressewesen
GreenPeace Referat
Der Trend zur Globalisierung
Hermann Hesse Biographie und Werke
Hermann Hesse Kinderseele
Ödön von Horvath – Jugend ohne Gott
Johann Wolfgang von Goethe wichtigst…
Der kaukasische Kreidekreis
Lebenslauf Milan Kundera
Bildende Kunst
Das Drama
Literatur im Mittelalter
Deutsche Literatur im Mittelalter
Literarische Entwicklung ab 1945
Gerhart Hauptmann Biographie
Medienkunde
Die Merowinger
Naturalismus – Hauptvertreter
Naturalismus Hintergrund
Die neuen Rechtschreibregeln
Die Nibelungen Sage
Olympische Spiele
Richard Wagner Parsifal
Realismus
Die Rede
Sansibar
Friedrich Schiller – Don Carlos
Die Welt der Science Fiction
Der Gute Mensch von Sezuan – Brecht
William Shakespeare Biographie
Siddharta
Theodor Fontane – Der Stechlin
Stefan Heym Schwarzenberg
Steppenwolf Hermann Hesse
The Lord of the Rings
Utopien in der Literatur
Ferdinand von Saar Biographie
Warten auf Godot
Wolfgang Borchert Lebenslauf
Wilhelm Tell – Schiller
Wirtschaftsordnungen
Die Verantwortung des Wissenschaftler
Literatur in der Zwischenkriegszeit
Preußen – Gescheiterte Revolution v…
Interviewtechniken Ideenfindung
Nationalsozialismus – Faschismus
Die griechischen Sagen
Die 68er Bewegung
Ernst Theodor Wilhelm Hoffmann – s…
Die Klassik Literatur
Zustandekommen von Vorurteilen
Arbeitslosigkeit
Kollektives Arbeitsrecht
I2C am 80C552 Microprozessor
Cray-Code-Zähler
Hardware für Digitale Filter
Adressierungsarten
Fehlersuche auf Integrierten Schaltk…
Grundschaltungen des JFET
Interrupts
Feldeffekttransistor – JFET
Logikfamilien
Logische Elektronik
PN-Übergang – Halbleiter – Diode
Luftdruckmessung
Dimmerschaltung
Temperaturmessung
IEC-Bus – comp.gest Meßsystem
Messwertaufnehmer
Serielle Datenübertragung
Fuzzy-Logic
Amerikas Westen
Umweltbewusste Energiegewinnung
Zusammenfassung Globalisierung
Bundesrepublik Deutschland
Artificial Intelligence
Doing Business in Japan
Production Technique
Mount Everest – Kilimanjaro – Mc Kin…
New Zealand – Land of the Kiwi
All quiet on the western front
All the kings men
Animal Farm
Animal Farm – Georg Orwell
Tolstoy Anna Karenina
Rain Man
The Call of the Wild
The Catcher in the Rye
Ernest Hemingway For Whom the Bell T…
Count Zero
John Briley Cry Freedom
One Flew Over the Cuckoo s Nest
Marylin Sachs The Fat Girl
William Faulkner As I lay dying
A Farewell to Arms
The invisible man
John Knowles A seperate Peace
A midsummer nights dreamA midsummer …
Of Mice and Men
Harry Sinclair Lewis Babbitt
The House of the Spirits
Little Buddha
The Pearl
Walkabout
Acid Rain
Principles of Marketing – Advertising
Alcohol and Tobacco
Australia
Bill Gates Background information
England and the English
Finance in Britain
Canada
The development of letters and books
Drug Takers
Engines
The Future
The Existence of God
Expert Systems Artificial Intelligence
The first art
The beauty of fractals
From Gliders to Rockets
George Orwell Nineteen Eighty-fou
Heat Treatment of Steel
Hemp
Histroy of the English language
Television
Divided Ireland
Nineteen eighty-four
Production of Iron
Television
The Channel Tunnel
The Client
Internet
The moving finger
The Red Pony
The X-Files
Tombstone
Voices Across the Earth
Kurt Vonnegut
Wire Pirates
Collection of english workouts
Investing in poeple
Economic backgrounds of the Gulf cri…
American Revolution
Virgil The Aeneid
Autism
Die Schweiz
Die sieben Weltwunder
Der Alpentransit
Das Sonnensystem
Die Sterne
Bevölkerungsproblem Chinas
Bodenkundewissenschaften in der 3.Welt
Prachtstraßen in Wien
Paris
Endogene Kräfte – Vulkane
Energie – Gestern Heute Morgen
Entstehung des Erdöls
Japan – Geographische Daten
Entstehung von Erdbeben
Geologie Österreichs
Grönland
Geschichte der Agrarwirtschaft
Ökologische. Belastungen d. Tourismus
Polarlichter
Vulkanismus
Berliner Mauer
Computer im Militärwesen
Demokratie – Ursprung und Entwicklung
Das Burgenland in der Zwischenkriegs…
Die industrielle Revolution in Deuts…
Vormärz Metternichsche Staatensystem
WBRS-Referat Gerichtsbarkeit
Wiener Kongress Metternichs Polizeis…
Der Erste Weltkrieg
der erste Weltkrieg
Der Erste Weltkrieg
Der 2.Weltkrieg
Kriegsverlauf von 1942-1945
Geschichte ab 1848
Alexander der Große
Wien in der Donaumonarchie
Der amerikanische Sezessionskrieg
Weltbilder
Verfassungsstaat – Ausgleich mit Ung…
Außenpolitik unter Adolf Hitler
Die Geschichte der Südslawen am Bal…
Balkankonflikte
War in Bosnia – Herzegowina – a review
Biologische Kriegsführung
Bundeskanzler Engelbert Dollfuß
Cäsars gallische Ethnographie
Geschichte Chinas
Christenverfolgung im Römischen Reich
Rettung der dänischen Juden
Das faschistische Italien
Tatsachenbericht des jüdischen Gesc…
Der Aufstieg Japans
Der Golfkrieg
Der kalte Krieg
Der Nahostkonflikt
Der spanische Bürgerkrieg
Der Deutsche Widerstand
Die zweite Republik
Österreich unter den Babenbergern
Die französische Revolution
Geschichte Frankreichs
Die Kelten
Die lateinische Sprache
Die Phönizier
Die Schlacht von Stalingrad
Die Westslawen
Widerstand gegen Hitler und das At…
Ende des Kolonialsystems in Afrika
Die Ausbildung der Konfessionen
Die Entwicklung im nahen Osten
Faschismus und Nationalsozialismus
Judenverfolgung
Kosovo
Die Geschichte Der Atombombe
Geschichte Jugoslawiens
Griechenland – geographisch und öko…
Griechenland vor den Perserkriegen
Die Grund- und Freiheitsrechte
Die Freiheitlichen und Rechtsextremi…
Die indianischen Hochkulturen Amerikas
Der Imperialismus
Deutsche Kolonien
John Fitzgerald Kennedy
Judenverfolgung der NSDAP
Jugend unter dem Hakenkreuz
Jugend, Schule und Erziehung im 3. R…
Das Königtum im Mittelalter
Geschichte Koreas vor dem 2. WK
Der Koreakrieg
Lebenslauf von Adolf Hitler
Das Lehnswesen im Mittelalter
Das Erbe des Mittelalters und der We…
NATO Referat
Otto von Bismarck
Pariser Vorortverträge
Der Fall Barbarossa
Pol Pot
Der Faschismus in Rom
Das sowjetische Experiment
Die Russische Revolution von 1917
Rolle der Schweiz im zweiten Weltkrieg
Die SS und ihr Krieg im Westen
Die Trajanssäule
Die Außenpolitik der USA
Der Erste Weltkrieg
Die Wandmalerei Kalk
Alexanders Weg zur Größe
Der Erste Weltkrieg
Zentralisierung Entstaatlichung NS R…
Zivilgerichtsbarkeit
Wie sich der Mensch aus dem Tierreic…
Bürgertum in Frankreich im 18. Jahr…
Die Europäische Union – EU
Geschichte – Die Entstehung von Hoc…
China
Die Ringstraße
Islamische Kunst in Spanien
Die Römer und die Philosophie
Augustinus – Kirchenvater und Philos…
UHF–und-Mikrowellen-Messtechnik
Datenübertragung – Begriffe
Compilerbau
Datenbankserver – SQL
Großrechner
Kryptologie
Magnetspeicher
Instrumentationen und Schnittstellen
Optische Nachrichtensysteme mit Lich…
Monitore und Grafikkarten
Netzwerktechnik
Windows NT Ressourcenverwaltung
Objektorientierte Programmierung
Plotter und Drucker
AMD-K6-III Prozessor
Einführung in die fraktale Geometrie
Matura Mathematik
Mathematik Zusammenfassung
Funktionen Mathematik
Wahrscheinlichkeitsrechnung
Maturamappe Mathematik
Referat-Albert-Einstein
Alternativenergiegewinnung
Doppler-Effekt
Der-Delphi-Report
Grundlagen-zum-Thema-Strom
Gravitationsfeldstärke
Optik-Referat
Kernfusion–Wasserstoffbombe
Laser
Die-Quantentheorie
Der-Stirlingmotor
Sternentwicklung
Antimaterie
Kernspaltung
Batterien-Akkumulatoren
Explosivstoffe
Flammenfärbung-Feuerwerke
Natürliche-Radioaktivität
Modell-für-elektrische-Leitungsvorg…
Photographie
Radioaktivität
Raketenantriebe
James-Joyce-The-Dead
Reibung
Der-Saturn
Solarzellen
Kommutierung
Photovoltaik
Schwingungen-und-Wellen
Chaos
Liturgiegeschichte
Die Spieler im Systemspiel
Schutz für Dateien
Aufwandschätzung
Ausgeglichene Bäume
AVL-Bäume
Betriebssysteme
Binäre Bäume
Der Algorithmus von Bresenham
Computerviren
Concurrency-Problem
3D-Grafik

Insgesamt 513 Referate von Anna

YKM.de ✔ Quickly Shorten Url

YKM.de ✔ Quickly Shorten Url

ykm.de/SN_Mat_5609

Diese short-URL bringt Dich direkt zu  Biographie Referate auf schulnote.de.
Teile Sie mit Deinen Freunden.

Diese Suche hilft Dir, alles auf den Seiten von schulnote.de zu finden. In den Schulfächern kannst du Deine Suche verfeinern, in dem Du die Tabellensuche verwendest.