Laser

Laser​ - ein Physik Referat

Dieses Referat hat Anna geschrieben. Anna ging in die 11. Klasse. Für dieses Physik Referat hat wurde die Note 2 vergeben.
Schulnote.de und alle anderen SchülerInnen, die dieses Referat benutzen, bedanken sich bei Anna herzlichst für die fleißige Unterstützung und Bereitstellung dieser Hausaufgabe.

Ihr könnt die Leistung von Anna würdigen und mit Sternen nach Schulnoten bewerten.

Reden und Vorträge halten.

Bei Vorträgen ist die Vorbereitung und Übung das Wichtigste. Notiere Dir nur Stichpunkte zu Deinem Referat, um nicht in Versuchung zu kommen abzulesen. Vergiss bei Deiner Vorstellung nicht zu erwähnen, wer Du bist – also Deine Vorstellung, und über wen bzw. über was Du Deine Rede hältst. Rede frei und beachte Deine Zuhörer, aber lasse Dich nicht ablenken. Schaue in Deine Klasse und beobachte die Reaktionen. Passe dann Deine Redegeschwindigkeit an. Ein gutes Referat sollte 5-7 Minuten dauern. Verpacke etwas Witz in Deinem Vortrag, um Dein Publikum nicht zu langweilen. Viel Erfolg wünscht Schulnote.de!

Verbessere Deine Anna Note und profitiere mit Geschichten und Referaten bei Vorträgen von dem Wissen hunderter Schüler deutschlandweit. Viele Schüler haben ihre Anna Vorträge bei schulnote.de gefunden und durch unsere Referate, Biographien und Geschichten ihre Leistungen verbessert. Beachte bitte, dass Du diese Arbeiten nur für die Schule verwenden darfst. Du darfst sie nirgendwo posten oder anderweitig verwenden. Wir freuen uns, wenn wir Dir geholfen haben. Berichte uns von Deiner neuen Note! Nutze dafür die Feedback-Funktion.

Dies ist ein Artikel geschrieben von SchülerIn Anna, schulnote.de ist weder für die Richtigkeit noch für die Quelle verantwortlich.

Was ist ein Laser, Wie erzeugt ein Laser ein Lichtbündel, Die Entwicklung des Laser, Der erste Laser, Festkörperlaser, Gaslaser, Halbleiterlaser, Die Anwendung des Laser

Was ist ein Laser

Ein Laser ist grob gesagt ein Energieumwandler für elektromagnetische Schwingungen im Bereich der Lichtwellen. Ein Laser strahlt Licht aus.

In Grundzügen kann man die Funktionsweise eines Lasers mit der einer Glühlampe vergleichen:
Dem Glühfaden der Glühlampe wird elektrische Energie zugeführt. Die Metallatome des Glühfadens laden sich mit dieser Energie auf, d.h. sie treten in einen höheren Energiezustand und geben diese Energie in Form von Lichtteilchen (sogenannten Quanten oder Photonen) wieder ab. Danach kehren sie in ihren energieärmeren Zustand zurück.
Jedes Atom sendet bei dieser Energieänderung seine Photonen unabhängig von den anderen Atomen aus. Ergebnis: Es entstehen Lichtwellen mit ganz unterschiedlichen Wellenlängen (Frequenzen). Diese Frequenzen nehmen das gesamte Spektrum des sichtbaren Lichtes ein. Das Gemisch aller Farben im Bereich des sichtbaren Lichtes empfindet unser Auge als weiß. Die Glühlampe erzeugt durch die Energiezufuhr Lichtwellen, die sich nach allen Seiten ausbreiten, ganz im Gegensatz zum Laser.
Der erste Unterschied zwischen Glühlampe und Laser besteht darin, daß der Laser ein (nahezu) paralleles Lichtbündel erzeugt (d.h. alle Lichtstrahlen werden in die gleiche Richtung ausgesendet), das nur aus einer einzigen Farbe besteht (es ist „monochromatisch“). Die Wellenlänge dieses vom Laser ausgesandten Lichtbündels variiert von infrarot bis ultraviolett. Die einzelnen Wellen dieses parallelen Lichtbündels schwingen zusammenhängend (sie sind „kohärent“). Die Intensität der Strahlung ist zudem viel höher als bei normalem Mischlicht.


Wie erzeugt ein Laser ein
„Lichtbündel“ ?


Ein bestimmter Stoff, z.B. ein Rubinkristall, wird durch Bestrahlung von außen dazu angeregt, seinerseits besonders starke Lichtwellen auszusenden. Durch diese Eigenschaft hat das Verfahren auch seinen Namen:
LASER ist die Abkürzung für „Light Amplification by Stimulated Emission of Radiation“, was übersetzt „Lichtverstärkung durch künstlich angeregte Aussendung von Strahlung“ bedeutet.
In einem Rubinlaser ist eine sehr helle Quecksilberdampflampe installiert. Der Rubinkristall wird von dieser Lampe „umschlossen“. Mit der Quecksilberdampflampe werden sehr helle Lichtblitze erzeugt.
Durch dieses Blitzlicht werden die im Rubinkristall enthaltenen Chromatome mit Energie aufgeladen.
Diese aufgeladenen Chromatome geben nun Photonen ab, die sich in Richtung auf die beiden Enden des Rubinkristalls in Bewegung setzen. Die eine Seite des Rubinkristalls ist vollverspiegelt, die andere Seite ist teilverspiegelt. Die „abgeschossenen“ Photonen prallen nun auf die Verspiegelungen am Ende des Kristalls und werden „zurückgeschleudert“. Dieses Verfahren wird „optisches Pumpen“ genannt. Es entsteht eine Art Kettenreaktion: Immer mehr Chromatome werden angeregt, ihre Photonen (Lichtquanten) abzugeben. Dadurch fliegen weitere Lichtteilchen durch den Rubinkristall. Der Lichtstrahl wird immer mehr verstärkt. Wenn der Strahl eine bestimmte Kraft (Intensität) erreicht hat, „schießt“ er durch die teilverspiegelte Strinfläche als dunkelroter (beim Rubinlaser), gleichschwingender Lichtstrahl nach außen.


So schaukelt sich
der Laser selbst auf

In einem normalen Material, zum Beispiel einem Gas, befinden sich fast alle Atome oder Moleküle im Grundzustand. Nur wenige Teilchen, die zufällig durch einen Stoß oder ein einfallendes Photon angeregt wurden, sind in einem höheren Energiezustand. Am Gesamtzustand des Materials ändert das praktisch nichts.
Wird das Gas mit Energie „vollgepumpt“, befinden sich fast alle Teilchen im angeregten Zustand. Man nennt dies eine „Inversion“. Sie fallen nach einiger Zeit wieder spontan in den Grundzustand zurück und senden dabei jeweils ein Photon aus – unregelmäßig und nach beliebigen Richtungen: Das Gas leuchtet wie in einer Neonröhre.
In Laser wird die Inversion gezielt „abgeräumt“: Die Spiegel an den Enden (der rechte ist halbdurchlässig) werfen die abgegebenen Photonen hin und her – sie treffen auf angeregte Teilchen und regen diese zur Abgabe weiterer Photonen an. Nur die, die senkrecht zu den Spiegeln fliegen, werden verstärkt, alle anderen entweichen seitlich.

Die Stärke eines solchen Laserstrahls variiert von Bruchteilen eines Milliwatt bis zu gewaltigen Megawatt-Lasern (1 Megawatt = 1000 Kilowatt) des Militärs.
Es gibt zwei unterschiedliche „Austrittsarten“ eines Lasers. Zum einen wäre da der „Impulslaser“ („gepulster Laser“) zu nennen, der seine Energie in kurzen Lichtbündeln „abschießt“. Auf der anderen Seite gibt es den „Dauerstrichlaser“, der kontinuierlich ein Lichtbündel aussendet.
Das aktive Medium eines Lasers kann ein Gas, eine Flüssigkeit oder ein Feststoff sein.


Die Entwicklung des Laser


Vom Maser zum Laser

Bereits im Jahre 1917 erklärte der Physiker Albert Einstein, daß ein „Aufladevorgang“ (Physiker nennen das eine „Induzierte Emission“), wie er beim später entwickelten Laser stattfindet, möglich sein müsse.
Die Wissenschaftler R. Ladenberg und H. Kopfermann verwendeten bei ihren „Aufladeversuchen“ im Jahre 1927 verschiedene Gase.
Die erste Lichtverstärkung gelang dem sowjetischen Physiker W.A. Fabrikant im Jahre 1940. Der nächste Schritt in der Laserentwicklung gelang dem deutsch-französischen Physiker Alfred Kastler 1950. Er entwickelte das System des „optischen Pumpens“: Kastler bestrahlte Atome mit Licht solcher Frequenz, das von den Atomen absorbiert ) werden konnte. Die Atome gerieten in einen höheren Energiezustand und gaben das „aufgesaugte“ Licht dann verstärkt ab. Kastler machte einen Teil seiner Versuche mit sichtbarem Licht, experimentierte zusätzlich aber auch mit Radiowellen.
Die durch die Bestrahlung mit Radiowellen erfolgte Mikrowellenverstärkung wurde später unter der Bezeichnung MASER bekannt. MASER ist die Abkürzung für „Microwave Amplification by Stimulated Emission of Radiation“, was übersetzt „Mikrowellenverstärkung durch künstlich angeregte Aussendung von Strahlung“ bedeutet. Heutzutage wird der Maser hauptsächlich beim Nachrichtenverkehr mit Erdsatelliten, in radioastronomischen Empfangsanlagen und bestimmten Richtfunkanlagen als Verstärker verwendet. Der Maser wird zusätzlich auch für den Betrieb von Atomuhren und als Generator für Millimeterwellen verwendet.
Verantwortlich für die Entwicklung des Masers waren u.a. die amerikanischen Physiker Charles Hard Townes, Arthur Leonard Schawlow und H.J. Zeiger. Sie beschäftigten sich, von der Radartechnik ausgehend, mit dem Bau von Mikrowellenlasern.
Das Maser-Prinzip wurde 1951 von Townes formuliert. Townes verwendete Ammoniakmoleküle. Er bestrahlte diese Moleküle mit einer Mikrowelle, deren Frequenz mit der Eigenfrequenz der Ammoniakmoleküle übereinstimmte.
Durch diese Bestrahlung wurden die Moleküle in einen höheren Energiezustand versetzt, die ihre Strahlung dann wieder verstärkt abgaben. Es entstand also eine Mikrowelle mit sehr hoher Intensität. Im Jahre 1953 war dann auch der erste in den USA entwickelte Gasmaser fertig.
Zeitgleich wurde auch in der Sowjetunion fieberhaft am Maser-Prinzip gearbeitet. Die Experimentierergebnisse der Russen waren den Amerikaner sehr hilfreich bei ihrer eigenen Maserentwicklung. Die Entwicklung des Masers ging aber noch weiter. Townes entwickelte nach seinem Gasmaser Ende der fünfziger Jahre den ersten Festkörpermaser als Molekularverstärker.
1957 entwickelten auch die Wissenschaftler in der UdSSR den ersten Festkörpermaser. Während dieser Zeit war Townes in den USA an der Columbia-Universität schon mit der Laserentwicklung beschäftigt.


Der erste Laser


Seit 1957 hatte Townes die Idee, im Maser statt Mikrowellenbestrahlung eine Lichtbestrahlung zu verwenden. Diese erste Theorie des Lasers, die 1958 erschien, wollte Townes sich nun patentieren lassen. Dabei gab es allerdings ein Problem für ihn: Der Atomphysiker Gordon Gould hatte sich ebenfalls mit der Theorie eines Lasers beschäftigt und bereits 1957 Aufzeichnungen über seine Versuche beim Notar hinterlegt. Es kam zu einem endlosen Rechtsstreit, der erst 1977 mit einem Teilerfolg für Gould endete. Doch war es eben nur ein Teilerfolg, denn bereits 1960 wurde der Laser für Townes und Schawlow patentiert – oder besser gesagt: die Laseridee. Denn bis jetzt war es eben eine bloße Theorie, gebaut wurde der Laser bis zu diesem Zeitpunkt noch nicht.
Zahlreiche Forscher „stürzten“ sich auf das Laser-Projekt. Der erste funktionierende Rubinlaser wurde jedoch nicht von einer großen Universität entwickelt sondern vom amerikanischen Physiker Theodore Harold Maiman in einem kleinen Nebenlabor der Hughes Aircraft Company. Dieser Rubinlaser wurde 1960 präsentiert, im gleichen Jahr also, in dem das Patent an Townes und Schawlow vergeben wurde.


Die verschiedenen Laserarten


Heutzutage gibt es drei Typen von Lasern, die den Markt „beherrschen“.
Neben dem Festkörperlaser, den Maiman mit seinem Rubinlaser verwirklicht hatte, gibt es noch den Gaslaser und den Halbleiterlaser.
Die drei Laser unterscheiden sich in der Art des aktiven Mediums, also des Teils, der mit Energie „vollgepumpt“ wird und in der Art und Weise der Anregung.
Als aktives Medium im Festkörperlaser eignen sich bestimmte Kristalle oder Glas, die mit lichtverstärkenden Atomen angereichert sind. Als Beispiel ist hierbei der Rubinkristall zu nennen, der Spuren von Chrom enthält.
Der bekannteste Festkörperlaser ist der Rubinlaser, der ein rotes Laserlicht ausstrahlt.

Neben dem Rubinlaser ist in erster Linie der Neodym-Glaslaser (Aluminiumoxidkristall) zu nennen, in dessen Glas (dem Feststoff) ca. 1% Neodym-Ione eingeschlossen sind. Der Neodym-Laser sendet ein infrarotes Licht aus.
Ein weiterer Laser, der mit einem Festkörper als aktivem Medium arbeitet, ist der Yttrium-Aluminium-Granat-Laser, abgekürzt YAG-Laser.
Festkörperlaser gehören zur Gruppe der Impulslaser, die durch intensive Lichtblitze (z.B. durch eine Quecksilberdampflampe) angeregt werden und ihrerseits dann wiederum verstärkte Lichtblitze aussenden. Einsatzgebiete des Festkörperlasers sind z.B. das Bohren sehr kleiner Löcher, das Schneiden, Schmelzen und Verdampfen. Bei mehrstufiger Verstärkung und Energiespeicherung wird aus dem Festkörperlaser ein Riesenimpulslaser, mit dem eine Ausgangsleistung von ca. 100 Millionen Kilowatt erreicht werden kann.
Dieser „Riesenenergieschub“ steht aber nur für den Bruchteil einer Millisekunde zur Verfügung.

Der nächste Laser ist der sogenannte Gaslaser.
Gaslaser enthalten als aktives Medium ein Edelgas, Metalldämpfe oder Molekülgase.
Angeregt wird das Gasmedium durch optisches Pumpen (= Lichtblitze) oder durch Anlegen einer elektrischen Hochspannung, die dann, ähnlich wie in einer Neonröhre (Leuchtstoffröhre), die Gasentladung erzeugt.
Der Gaslaser gehört in die Gruppe der Dauerstrichlaser.
Ein Gaslaser ist z.B. der Helium-Neon- oder der Argonlaser. Der Helium-Neon-Laser sendet ein rotes Licht aus, während der Argon-Laser ein blaues bis grünes Licht aussendet.
Eine wesentlich höhere Leistung als diese beiden Laser hat der Kohlendioxidlaser (CO2-Laser), der ein infrarotes Licht aussendet. Der Kohlendioxidlaser wird vor allem für energieaufwendige Schneideaufgaben verwendet. Die leistungsschwächeren Gaslaser werden dagegen häufig in Präzisionsgeräten für berührungsfreies Messen eingesetzt. Das Einsatzgebiet reicht dabei z.B. von der Dickenkontrolle von Walzblech bis zur Überwachung der Schwebehöhe von Magnetschwebebahnen.
Die ersten Gaslaser gab es 1961. Sie wurden von den drei Physikern A.Javan, W.R.Bennett und D.R.Herriott entwickelt.

Die einfache Gasentladung im Laser dauert nur sehr kurze Zeit. Aus diesem Grund ist ein Gaslaser meistens ein „Impulslaser“, der kurze Lichtstöße aussendet. Man kann jedoch mit starken Radiowellen aus dem Impulslaser einen Dauerstrichlaser machen.

Als dritte Lasergruppe ist die Gruppe der Halbleiterlaser zu nennen.
Die ersten Halbleiterlaser wurden 1962 erprobt. Das aktive Medium ist in diesem Fall ein Halbleiterkristall, z.B. aus Gallium-Arsenid (GaAs-Laser). Dabei macht man sich den Positiv-Negativ-Übergang (pn-Übergang) des Halbleiters zu nutze. Positiv-Negativ-Übergang bei Halbleitern bedeutet grob gesagt folgendes:
Liegt der n-Halbleiter am Minuspol und der p-Halbleiter am Pluspol, so kann ein Strom fließen; wird die Polung vertauscht, so wird der Stromfluß unterbrochen.
Betrieben werden kann der Halbleiterlaser mit Gleichstrom. Diese Eigenschaft ist entscheidend für den Einsatz des Halbleiterlasers in der Nachrichtenübertragung (als Laserdiode).
Ein großer Vorteil des Halbleiterlasers ist die Möglichkeit, ihn ohne Konstruktionsprobleme nur staubkorngroß bauen zu können. Sein hoher Wirkungsgrad bleibt dabei erhalten.
Vorteilhaft ist auch, daß der Halbleiterlaser im Dauerstrich- und im Impulsbetrieb betrieben werden kann. Halbleiterlaser findet man heutzutage z.B. in CD-Playern (Die Funktionsweise eines CD-Players wird am Ende des Textes erläutert). Den Halbleiterlasern werden die größten Zukunftschancen eingeräumt.


Die Anwendung des Laser

Vom Diamantbohrer zur Laserkanone


Das Anwendungsgebiet des Lasers ist weit gestreut.
Eines der ersten Aufgabengebiete eines Lasers war z.B. das Bohren winziger Löcher in Uhrensteine eines schweizer Uhrenherstellers. Mit dem verwendeten Festkörperlaser war es möglich, stündlich vollautomatisch 20.000 Bohrungen durchzuführen, ein Mehrfaches von dem, was konventionelle Maschinen erreichten.

Gaslaser mit Dauerstrichbetrieb fanden und finden Anwendung im Tunnelbau (z.B. bei U-Bahnen oder dem Eurotunnel). Die Laser lenken riesige Bohrmaschinen „schnurgeradeaus“ durch die Erde.
Auch als Meßgerät finden Laser vielfach Verwendung. Z.B. werden Dicken, Entfernungen und Geschwindigkeiten berührungslos mit dem Laserstrahl gemessen. Das Prinzip ist ganz einfach: Der auf die Oberfläche des zu vermessenden Objekts gerichtete Laserstrahl wird reflektiert (z.B. mit Hilfe eines Spiegels) und von einer Fotodiode wieder aufgefangen. Jetzt wird die Laufzeit des Strahls ermittelt und daraus die Entfernung berechnet. Ein berühmtes Beispiel hierfür ist die Vermessung der Strecke Erde-Mond: Die Astronauten der Apollo-11-Mission stellten bei ihrem ersten historischen Mondbesuch 1969 einen Laserreflektor auf dem Mond auf, der am 01.August 1969 von einem Riesenimpulslaser, der in Kalifornien stand, angepeilt wurde. Nach knappen 21/2 Sekunden wurde der reflektierte Laserstrahl wieder aufgefangen. Seit diesem Tage ist die Entfernung Erde-Mond, bis auf 20 cm genau, bekannt.

Lasertechnik wird in immer größerem Umfang auch in der Medizin eingesetzt. Statt mit mechanischen Geräten werden Zähne heute mit Lasern gebohrt. Auch abgelöste Augen-Netzhäute können mithilfe eines Lasers wieder „angeschweißt“ werden.
Auch im Umweltschutz hat der Laser Einzug gehalten. Mit Lidar-Geräten (Lasergeräte nach dem Radarprinzip) werden Staub-, Dunst- und Wolkenschichten jeder Art geortet. Dadurch können z.B. Luftverschmutzer entlarvt werden.
In der Kernenergie sollen Superlaser mit Strahlungsleistungen um eine Milliarde Kilowatt helfen, das Problem der kontrollierten Kernfusion zu lösen und damit in Zukunft ermöglichen, „saubere“ Kernkraftwerke zu bauen.
Nach Meinung von Fachleuten wird das in der Zukunft bedeutendste Anwendungsgebiet von Lasern die Nachrichtentechnik sein. Zur Datenübermittlung in Lichtwellenleitern, sogenannten Glasfasern (siehe Teil 2 des Textes), werden Laserdioden eingesetzt.


Der Laser als Waffe


Ein großes Laser-Anwendungsgebiet ist die Waffentechnik. Wenn man den Begriff „Laserkanone“ hört, so denkt man meistens an Science-Fiction-Filme, wie z.B. StarTrek – Raumschiff Enterprise/Voyager oder an die StarWars-Trilogy.
Doch auch in der Gegenwart werden Laserwaffen bereits eingesetzt:
Laser-Zieleinrichtungen und Entfernungsmeßgeräte, Laser-Ortungsgeräte und Nachrichtenübermittlungsgeräte gibt es heutzutage schon (z.B. in Kampfpanzern, FlaRakPanzern, usw.). Ein Waffenbeispiel für Lasertechnik gibt es aus den USA: Dort wurde ein Landepanzer für die Marine entwickelt, der mit einem 400.000 Watt Laser ausgerüstet war. Der Panzer war mit einer Panzerabwehrrakete vom Typ TOW bestückt, die nun mit Hilfe des Lasers „punktgenau“ ins Ziel gesteuert werden konnte.
Auch in Kampfflugzeugen wird die Lasertechnik eingesetzt, wie man es z.B. im Krieg der USA gegen den Irak sehen konnte. Die Rakete steuerte auf einem „Laserleitstrahl“ genau ins gegnerische Ziel.
In New Mexico (USA) gibt es seit 1982 ein Testgelände für eine Laserkanone mit 2,2 Millionen Watt Leistung.
Ein bekanntes Beispiel für den Einsatz des Lasers als Waffe ist das 1983 vom US-Präsidenten Ronald Reagan gestartete Programm zur Errichtung eines „Schutzschildes im Weltraum“. Bekannt wurde dieses Projekt als „Strategic Defense Initiative“ (SDI).

Für den Einsatz als Abwehrwaffe gab es 1987 vier Laserarten, die dafür geeignet schienen. Diese Laser waren in der Lage, während der Antriebsphase einer Rakete (vom Abschuß der Rakete bis zum Lösen der Flugkörper von der Antriebsrakete) diese durch einen Laserschuß zu zerstören.

Einer dieser vier Laser war der „chemische Laser“. Er erreicht seine Strahlung durch die Reaktion zweier Gase (z.B. Wasserstoff & Fluor). Er ist ein Dauerstrichlaser mit einer Leistung von mehr als einem Megawatt (103 Kilowatt). Um diesen Laser als Abwehrwaffe gegen Raketen einsetzen zu können, wäre allerdings mindestens die 20-fache Leistung erforderlich.
Der zweite Laser war der sogenannte „Excimer-Laser“, der Licht erzeugt, das in rasch aufeinanderfolgenden Impulsen ausgesendet wurde. Einer der stärksten Laser dieser Art war der Krypton-Flourid-Laser. Doch auch er war als Abwehrwaffe untauglich, da er statt einer mehrere Millisekunden dauernden Aussendung von mindestens 100 Megajoule nur etwa 1 Mikrosekunde lang 10 Kilojoule erzeugen konnte.
Als nächstes überlegte man, ob der „Freie-Elektronen-Laser“ als Raketenabwehr geeignet wäre.
Der „Freie-Elektronen-Laser“ funktionierte nach folgendem Prinzip:
Ein Elektronenstrahl wird durch ein magnetisches Wechselfeld (die Pole werden andauernd „vertauscht“) gelenkt. Durch die ständigen Magnetfeldänderungen werden die bewegten Elektronen in Schwingungen versetzt. Dadurch wird elektromagnetische Strahlung ausgesendet. Die Strahlung konnte man beim „Freie-Elektronen-Laser“ durch Variation der Magnetfeldänderung auf jede beliebige Wellenlänge einstellen.
Auch dieser Laser war als Abwehrwaffe nicht zu gebrauchen, da er bei einer vorausgesetzten Wellenlänge von einem Mikrometer eine Mindestleistung von ca. 1 Gigawatt (1 Million Kilowatt) hätte bringen müssen. Die Wellenlänge von einem Mikrometer war unbedingt notwendig, da es in diesem Bereich keine atmosphärische Absorption gegeben hätte. Das wiederum war wichtig, da die Laserkanone ja durch die Atmosphäre geschossen hätte.
Bei einer Wellenlänge von einem Mikrometer lag die Spitzenleistung jedoch bei nur 1000 Kilowatt. Also war somit auch der „Freie-Elektronen-Laser“ ungeeignet.

Der vierte Laser, den man verwenden wollte, war der „Röntgen-Laser“.
Ein nuklearer Sprengsatz wird zur Explosion gebracht, die das Freiwerden von Röntgenstrahlen verursacht. Röntgenstrahlung ist viel energiereicher als elektromagnetische Strahlung und wäre somit zur Abwehr von Raketen sehr geeignet gewesen.
Bei der Entwicklung des Röntgenlasers trafen die Wissenschaftler jedoch auf viele Probleme, so daß an dieser Technologie heutzutage immer noch geforscht wird.
Bis heute gibt es (wahrscheinlich) noch kein ausgereiftes Raketenabwehrsystem auf Laserbasis.
Ein Problem ist, einen genügend starken Laser zu entwickeln, der die benötigte Energie leisten kann.
Viel entscheidender ist jedoch das Problem, den Laserstrahl in sein Ziel (in die feindliche Rakete) zu lenken. Zu diesem Zweck benötigt man Spiegel mit einem Durchmesser von 10 bis 40 Metern. Bis heute liegt die Durchmessergrenze jedoch bei ca. 8 Metern.
Problematisch ist dabei nämlich, daß so ein großer 40-Meter-Spiegel schnell und vor allem präzise steuerbar sein muß, um auf beweglich Ziele ausgerichtet werden zu können.


Die „friedliche“ Anwendung
des Laser


Ein „friedliches“ Anwendungsgebiet eines Lasers findet man im Unterhaltungselektronik- und im EDV-Bereich.
Dort gibt es viele Geräte, die mit einem Laser arbeiten:
Laserdrucker, CD-ROM-Laufwerke, Magneto-Optical-Disc (MO), Digital-Versatile-Disc (DVD), CD-Brenner und Audio-CD-Player.

Zwei Geräte möchte ich hier etwas genauer in ihrer Funktion beschreiben und zwar

1. den Laserdrucker
2. das CD-ROM-Laufwerk

(stellvertretend für CD-Brenner, MO, DVD und Audio-CD)


Der Laserdrucker


Die zu druckenden Daten (Zeichen und Grafiken) werden mit Hilfe eines Laserstrahls auf eine lichtempfindliche Schicht, die sich auf einer rotierenden Trommel befindet, projiziert (Fotoleitertrommel)
An den vom Laser belichteten Stellen werden in der Entwicklerstation Tonerpartikel freigesetzt. Anschließend wird das Papier an der Fotoleitertrommel vorbeigeführt. Die Tonerpartikel auf der Fotoleitertrommel werden nun auf das Papier übertragen. Das Papier wird im Vorheizsattel auf mehrere 100 C erhitzt und läuft danach durch die Fixierwalzen, in denen der heiße Toner durch Druck in das Papier eingebrannt wird.
Die Fotoleitertrommel wird nun an der Entladestation entladen und an der Reinigungsstation gereinigt.
Nachdem die Fotoleitertrommel am Ladecorotron „vorbeigelaufen“ ist, kann sie wieder neue Druckdaten aufnehmen.
Laserdrucker gehören zu den Seitendruckern, d.h., daß immer eine komplette Druckseite in den Druckerspeicher übertragen werden muß. Ein „Teilladen“ einer Druckseite, wie z.B. bei Matrix- oder Tintendruckern, ist nicht möglich.


Das CD-ROM-Laufwerk


CD ist die englische Abkürzung für Compact Disc. Eine CD ist eine einseitig in digitaler Form bespielte Festspeicherplatte.
Die Compact Disc besteht aus einer Kunststoffscheibe von 12 cm Durchmesser und 1,2mm Dicke. Da die Daten in digitaler Form (binär, 1 und 0) gespeichert sind, besitzt eine CD eine viel bessere Abspielqualität als eine herkömmliche Langspielplatte, auf der die Informationen analog gespeichert sind. Bei der Wiedergabe einer CD entfällt z.B. das von den LPs bekannte „Knacken und Rauschen“.
Die Toninformationen auf der CD sind unterhalb einer transparenten Schutzschicht der mit einer reflektierenden Aluminiumschicht bedampften CD-Oberfläche als digitale Signale in Form von einer dichten Folge mikroskopisch feiner Pits abgespeichert. Als Pit bezeichnet man eine in diese CD eingebrannte Vertiefung mit einer Tiefe von 0,1 µm, einer Breite von 0,5 µm und einer Länge von 1 µm. Diese Pits werden entweder in die CD gepreßt, z.B. bei der Massenproduktion von CDs, oder sie werden von einem Laserstrahl eingebrannt, wie es bei den jetzt aktuellen CD-Brennern der Fall ist.
Die Pits sind wie auf einer Schallplatte spiralförmig angeordnet, laufen aber im Gegensatz zur LP von innen nach außen.
Die Informationen, die auf eine CD gespeichert werden sollen, müssen vorher in eine 14- bis 16-stellige Binärkombination umgewandelt werden.
Beim Abspielen der CD werden die digitalen Informationen mit Hilfe eines optoelektronischen Tonabnehmersystems gelesen. Die Pits werden berührungslos mit einem fokussierten Lichtstrahl eines Halbleiterlasers abgetastet; so werden z.B. die gespeicherten Musikinformationen über einen Digital-Analog-Wandler (D/A-Wandler) in Stereosignale rückgewandelt.

Der Autor hat leider keine Quellen genannt.

Direktor Schulnote.de

Anna

Autor dieses Referates

Physik
Schulfach

0 .
Klasse - angegeben vom Autor
0 ,0
Note - angebenem vom Autor


0,00

Note 6Note 5Note 4Note 3Note 2Note 1
Welche Note gibst Du?

Loading…
0
Aufrufe deses Referates
0
lesen gerade dieses Referat

TCP IP-Protokolle und Dienste
Edward Albee
Milben
Mitochondrien
Viren
AIDS Aufbau des HIVirus
Erkenntnisse über AIDS
Was ist AIDS
Alkohol und der Mensch
Aufbau und Wachstum Bakterien
Darstellung verschiedener Sehsysteme
Termiten – Isoptera
Das Auge
Natürliche Zuchtwahl
Funktion des Gehörsinnes
Das menschliche Gehirn
Der Gedanke der Urzeugung
Diabetes Zuckerkrankheit
Die Tropen
Dinosaurier
Elektrosmog
Gentechnik in der Landwirtschaft
Hormone
Parthenogenese
Anatomie des Kehlkopfes
Kommunikation von Bakterien
Konrad Lorenz Verhaltensforscher
Entstehung von Krebs
Ökosysteme in der Tiefsee
Parasitismus
Beschreibung einzelner Parasitenarten
Pest im Mittelalter
Photosynthese
Heroin
Ringelwürmer
Gentechnologie Grundlagen
Alternative Landwirtschaft
Die Medizin im antiken Rom
Der Traum und die Traumpsychologie
Die chemische Bindung
Bohrsches Atommodell
Brom Eigenschaften
Halogene
Der pH-Wert – pH Messtechnik
Chemische Schädlingsbekämpfung
Atomvorstellungen
Benzin
Fettverseifung
Kalk
Natronlauge Sodaherstellung
Grundlagen der Nuklearphysik
Fotographie
Entdeckung des Atoms
Gegenwartsliteratur der Mythos
Das Ikosaeder
Parallele Programmabläufe
Burleske
Alfred Andersch Literaturbesprechung
Besuch der alten Dame
Biographie Erich Kästners
Friedrich Dürrenmatt Literaturbespr…
Georg Büchner Literaturbesprech…
Wolfgang Borchert Literaturbesprechung
Bertolt Brecht Literaturbesprechung
Friedrich Hebbel Literaturbesprechung
Biographie Johann Nepomuk Nestroy
Ernst Theodor Amadeus Hoffmann Liter…
Max Frisch Literaturbesprechung
Die Blechtrommel
Die Bürger von Calais
Carmen Literaturbesprechung
Das Cafe der toten Philosophen
Eichendorff-Marmorbild
Das Tagebuch der Anne Frank Lietratu…
Demian
Der abenteuerliche Simplicissimus
Der Begriff Heimat
Der einsame Weg
Der Name der Rose – Umberto Ecos
Der Realismus
Der Talisman
Georg Büchner Dantons Tod
Deutsche Satire – Vertreter
Die Angst des Tormannes vor dem Elfm…
Die letzten Kinder von Schewenborn
Die Schwarze Spinne
Das Leben des Galilei – Brecht
Draußen vor der Tür
Effi Briest
Emil Kolb
Emil Erich Kästner
Expressionismus
Friedrich Dürrenmatt – Der Verdacht
Ferdinand Raimund
Die Feuerprobe
Fräulein Else
Frauenliteratur
Frühlings Erwachen Literaturbesprec…
The Good Earth
Gegenströmungen zum Naturalismus
Generationenkonflikt in der Literatur
Nicht alles gefallen lassen
Egmont
Goethe als Wissenschaftler
Franz Grillparzer
Hackl Erich
Heinrich Heine
Hermann Hesse Jugend
Homo Faber – Der Steppenwolf
Hugo von Hofmannsthal
Heinrich von Kleist
Henrik Ibsen
Ich bin ein Kumpel
Die Insel des vorigen Tages
Kafka Literaturverzeichnis
Franz Kafka – Das Schloss
Biographie von Franz Kafka
Klassik Literaturbesprechung
Lange Schatten
Gotthold Ephraim Lessing
Liebelei
Literatur der Arbeitswelt
Zeitkritische Literatur im 1. Weltkr…
Literaturmappe Gottfried Keller und …
Biedermeier
Johann Wolfgang von Goethe
Hermann Hesse
Max Frisch Biografie
Analyse Monolog von Faust
Trostlose Monotonie eines Arbeitsall…
Nathan der Weise – Die neuen Leiden…
Neue Sachlichkeit
Nicht nur zur Weihnachtszeit
Ödön von Horvath
Peter Handke
Peter Schlemihls wundersame Reise
Der Prozeß – Franz Kafka
Goerge Orwell 1984
Romantik
Romantik 1795-1835
Friedrich Schiller
Friedrich Torberg – der Schüler
Spielplatz der Helden
Sturm und Drang
Katherine Mansfield: The Dolls House…
Kurt Tucholsky
Unterm Rad von Hemann Hesse
Zukunftsvisionen – Utopien
Vergangenheitsbewältigung
Von Mäusen und Menschen
Vormärz, Junges Deutschland
Richard Wagner
Weh dem der lügt
Bürgerlicher Realismus
1984 – Orwell
Reise um die Erde in 80 Tagen
Maturavorbereitung – Deutsch
Wiener Aktionismus
Analyse rhetorischer Texte
Antike
Arthur Schnitzler Werke
Die Aufklärung
Bertolt Brecht Biographie
Heinrich Böll
Macht der Boulevardpresse
Brennendes Geheimnis
Chagall Biografie und Werke
Mutter Courage und ihre Kinder
Wiener Biedermeier
Datenautobahn
Der Kriminalroman
Die Ehe des Herrn Mississippi
Die Globalisierung
Ilse Aichinger – Die größere Hoffn…
Die Judenbuche – Annette von Droste-…
Die Rolandsage
Dshamilja Tschingis Aitmatow
Friedrich Dürrenmatt Lebenslauf
Dürrenmatt und die Komödie
Die Eisenbahn
Der Expressionismus
Werner Bergengruen – Die Feuerprobe
Franz Kafkas Lebenslauf
Frühlingserwachen von Frank Wedekind
Geschichte des Internets
Die Presse und das Pressewesen
GreenPeace Referat
Der Trend zur Globalisierung
Hermann Hesse Biographie und Werke
Hermann Hesse Kinderseele
Ödön von Horvath – Jugend ohne Gott
Johann Wolfgang von Goethe wichtigst…
Der kaukasische Kreidekreis
Lebenslauf Milan Kundera
Bildende Kunst
Das Drama
Literatur im Mittelalter
Deutsche Literatur im Mittelalter
Literarische Entwicklung ab 1945
Gerhart Hauptmann Biographie
Medienkunde
Die Merowinger
Naturalismus – Hauptvertreter
Naturalismus Hintergrund
Die neuen Rechtschreibregeln
Die Nibelungen Sage
Olympische Spiele
Richard Wagner Parsifal
Realismus
Die Rede
Sansibar
Friedrich Schiller – Don Carlos
Die Welt der Science Fiction
Der Gute Mensch von Sezuan – Brecht
William Shakespeare Biographie
Siddharta
Theodor Fontane – Der Stechlin
Stefan Heym Schwarzenberg
Steppenwolf Hermann Hesse
The Lord of the Rings
Utopien in der Literatur
Ferdinand von Saar Biographie
Warten auf Godot
Wolfgang Borchert Lebenslauf
Wilhelm Tell – Schiller
Wirtschaftsordnungen
Die Verantwortung des Wissenschaftler
Literatur in der Zwischenkriegszeit
Preußen – Gescheiterte Revolution v…
Interviewtechniken Ideenfindung
Nationalsozialismus – Faschismus
Die griechischen Sagen
Die 68er Bewegung
Ernst Theodor Wilhelm Hoffmann – s…
Die Klassik Literatur
Zustandekommen von Vorurteilen
Arbeitslosigkeit
Kollektives Arbeitsrecht
I2C am 80C552 Microprozessor
Cray-Code-Zähler
Hardware für Digitale Filter
Adressierungsarten
Fehlersuche auf Integrierten Schaltk…
Grundschaltungen des JFET
Interrupts
Feldeffekttransistor – JFET
Logikfamilien
Logische Elektronik
PN-Übergang – Halbleiter – Diode
Luftdruckmessung
Dimmerschaltung
Temperaturmessung
IEC-Bus – comp.gest Meßsystem
Messwertaufnehmer
Serielle Datenübertragung
Fuzzy-Logic
Amerikas Westen
Umweltbewusste Energiegewinnung
Zusammenfassung Globalisierung
Bundesrepublik Deutschland
Artificial Intelligence
Doing Business in Japan
Production Technique
Mount Everest – Kilimanjaro – Mc Kin…
New Zealand – Land of the Kiwi
All quiet on the western front
All the kings men
Animal Farm
Animal Farm – Georg Orwell
Tolstoy Anna Karenina
Rain Man
The Call of the Wild
The Catcher in the Rye
Ernest Hemingway For Whom the Bell T…
Count Zero
John Briley Cry Freedom
One Flew Over the Cuckoo s Nest
Marylin Sachs The Fat Girl
William Faulkner As I lay dying
A Farewell to Arms
The invisible man
John Knowles A seperate Peace
A midsummer nights dreamA midsummer …
Of Mice and Men
Harry Sinclair Lewis Babbitt
The House of the Spirits
Little Buddha
The Pearl
Walkabout
Acid Rain
Principles of Marketing – Advertising
Alcohol and Tobacco
Australia
Bill Gates Background information
England and the English
Finance in Britain
Canada
The development of letters and books
Drug Takers
Engines
The Future
The Existence of God
Expert Systems Artificial Intelligence
The first art
The beauty of fractals
From Gliders to Rockets
George Orwell Nineteen Eighty-fou
Heat Treatment of Steel
Hemp
Histroy of the English language
Television
Divided Ireland
Nineteen eighty-four
Production of Iron
Television
The Channel Tunnel
The Client
Internet
The moving finger
The Red Pony
The X-Files
Tombstone
Voices Across the Earth
Kurt Vonnegut
Wire Pirates
Collection of english workouts
Investing in poeple
Economic backgrounds of the Gulf cri…
American Revolution
Virgil The Aeneid
Autism
Die Schweiz
Die sieben Weltwunder
Der Alpentransit
Das Sonnensystem
Die Sterne
Bevölkerungsproblem Chinas
Bodenkundewissenschaften in der 3.Welt
Prachtstraßen in Wien
Paris
Endogene Kräfte – Vulkane
Energie – Gestern Heute Morgen
Entstehung des Erdöls
Japan – Geographische Daten
Entstehung von Erdbeben
Geologie Österreichs
Grönland
Geschichte der Agrarwirtschaft
Ökologische. Belastungen d. Tourismus
Polarlichter
Vulkanismus
Berliner Mauer
Computer im Militärwesen
Demokratie – Ursprung und Entwicklung
Das Burgenland in der Zwischenkriegs…
Die industrielle Revolution in Deuts…
Vormärz Metternichsche Staatensystem
WBRS-Referat Gerichtsbarkeit
Wiener Kongress Metternichs Polizeis…
Der Erste Weltkrieg
der erste Weltkrieg
Der Erste Weltkrieg
Der 2.Weltkrieg
Kriegsverlauf von 1942-1945
Geschichte ab 1848
Alexander der Große
Wien in der Donaumonarchie
Der amerikanische Sezessionskrieg
Weltbilder
Verfassungsstaat – Ausgleich mit Ung…
Außenpolitik unter Adolf Hitler
Die Geschichte der Südslawen am Bal…
Balkankonflikte
War in Bosnia – Herzegowina – a review
Biologische Kriegsführung
Bundeskanzler Engelbert Dollfuß
Cäsars gallische Ethnographie
Geschichte Chinas
Christenverfolgung im Römischen Reich
Rettung der dänischen Juden
Das faschistische Italien
Tatsachenbericht des jüdischen Gesc…
Der Aufstieg Japans
Der Golfkrieg
Der kalte Krieg
Der Nahostkonflikt
Der spanische Bürgerkrieg
Der Deutsche Widerstand
Die zweite Republik
Österreich unter den Babenbergern
Die französische Revolution
Geschichte Frankreichs
Die Kelten
Die lateinische Sprache
Die Phönizier
Die Schlacht von Stalingrad
Die Westslawen
Widerstand gegen Hitler und das At…
Ende des Kolonialsystems in Afrika
Die Ausbildung der Konfessionen
Die Entwicklung im nahen Osten
Faschismus und Nationalsozialismus
Judenverfolgung
Kosovo
Die Geschichte Der Atombombe
Geschichte Jugoslawiens
Griechenland – geographisch und öko…
Griechenland vor den Perserkriegen
Die Grund- und Freiheitsrechte
Die Freiheitlichen und Rechtsextremi…
Die indianischen Hochkulturen Amerikas
Der Imperialismus
Deutsche Kolonien
John Fitzgerald Kennedy
Judenverfolgung der NSDAP
Jugend unter dem Hakenkreuz
Jugend, Schule und Erziehung im 3. R…
Das Königtum im Mittelalter
Geschichte Koreas vor dem 2. WK
Der Koreakrieg
Lebenslauf von Adolf Hitler
Das Lehnswesen im Mittelalter
Das Erbe des Mittelalters und der We…
NATO Referat
Otto von Bismarck
Pariser Vorortverträge
Der Fall Barbarossa
Pol Pot
Der Faschismus in Rom
Das sowjetische Experiment
Die Russische Revolution von 1917
Rolle der Schweiz im zweiten Weltkrieg
Die SS und ihr Krieg im Westen
Die Trajanssäule
Die Außenpolitik der USA
Der Erste Weltkrieg
Die Wandmalerei Kalk
Alexanders Weg zur Größe
Der Erste Weltkrieg
Zentralisierung Entstaatlichung NS R…
Zivilgerichtsbarkeit
Wie sich der Mensch aus dem Tierreic…
Bürgertum in Frankreich im 18. Jahr…
Die Europäische Union – EU
Geschichte – Die Entstehung von Hoc…
China
Die Ringstraße
Islamische Kunst in Spanien
Die Römer und die Philosophie
Augustinus – Kirchenvater und Philos…
UHF–und-Mikrowellen-Messtechnik
Datenübertragung – Begriffe
Compilerbau
Datenbankserver – SQL
Großrechner
Kryptologie
Magnetspeicher
Instrumentationen und Schnittstellen
Optische Nachrichtensysteme mit Lich…
Monitore und Grafikkarten
Netzwerktechnik
Windows NT Ressourcenverwaltung
Objektorientierte Programmierung
Plotter und Drucker
AMD-K6-III Prozessor
Einführung in die fraktale Geometrie
Matura Mathematik
Mathematik Zusammenfassung
Mathematik der Funktionen
Funktionen Mathematik
Wahrscheinlichkeitsrechnung
Maturamappe Mathematik
Referat-Albert-Einstein
Alternativenergiegewinnung
Doppler-Effekt
Der-Delphi-Report
Grundlagen-zum-Thema-Strom
Gravitationsfeldstärke
Optik-Referat
Kernfusion–Wasserstoffbombe
Die-Quantentheorie
Der-Stirlingmotor
Sternentwicklung
Antimaterie
Kernspaltung
Batterien-Akkumulatoren
Explosivstoffe
Flammenfärbung-Feuerwerke
Natürliche-Radioaktivität
Modell-für-elektrische-Leitungsvorg…
Photographie
Radioaktivität
Raketenantriebe
James-Joyce-The-Dead
Reibung
Der-Saturn
Solarzellen
Kommutierung
Photovoltaik
Schwingungen-und-Wellen
Chaos
Liturgiegeschichte
Die Spieler im Systemspiel
Schutz für Dateien
Aufwandschätzung
Ausgeglichene Bäume
AVL-Bäume
Betriebssysteme
Binäre Bäume
Der Algorithmus von Bresenham
Computerviren
Concurrency-Problem
3D-Grafik

Insgesamt 513 Referate von Anna

YKM.de ✔ Quickly Shorten Url

YKM.de ✔ Quickly Shorten Url

ykm.de/SN_Phy_5657

Diese short-URL bringt Dich direkt zu  Biographie Referate auf schulnote.de.
Teile Sie mit Deinen Freunden.

Diese Suche hilft Dir, alles auf den Seiten von schulnote.de zu finden. In den Schulfächern kannst du Deine Suche verfeinern, in dem Du die Tabellensuche verwendest.