Chaos

Chaos​ - ein Physik Referat

Dieses Referat hat Anna geschrieben. Anna ging in die 11. Klasse. Für dieses Physik Referat hat wurde die Note 2 vergeben.
Schulnote.de und alle anderen SchülerInnen, die dieses Referat benutzen, bedanken sich bei Anna herzlichst für die fleißige Unterstützung und Bereitstellung dieser Hausaufgabe.

Ihr könnt die Leistung von Anna würdigen und mit Sternen nach Schulnoten bewerten.

Reden und Vorträge halten.

Bei Vorträgen ist die Vorbereitung und Übung das Wichtigste. Notiere Dir nur Stichpunkte zu Deinem Referat, um nicht in Versuchung zu kommen abzulesen. Vergiss bei Deiner Vorstellung nicht zu erwähnen, wer Du bist – also Deine Vorstellung, und über wen bzw. über was Du Deine Rede hältst. Rede frei und beachte Deine Zuhörer, aber lasse Dich nicht ablenken. Schaue in Deine Klasse und beobachte die Reaktionen. Passe dann Deine Redegeschwindigkeit an. Ein gutes Referat sollte 5-7 Minuten dauern. Verpacke etwas Witz in Deinem Vortrag, um Dein Publikum nicht zu langweilen. Viel Erfolg wünscht Schulnote.de!

Verbessere Deine Anna Note und profitiere mit Geschichten und Referaten bei Vorträgen von dem Wissen hunderter Schüler deutschlandweit. Viele Schüler haben ihre Anna Vorträge bei schulnote.de gefunden und durch unsere Referate, Biographien und Geschichten ihre Leistungen verbessert. Beachte bitte, dass Du diese Arbeiten nur für die Schule verwenden darfst. Du darfst sie nirgendwo posten oder anderweitig verwenden. Wir freuen uns, wenn wir Dir geholfen haben. Berichte uns von Deiner neuen Note! Nutze dafür die Feedback-Funktion.

Dies ist ein Artikel geschrieben von SchülerIn Anna, schulnote.de ist weder für die Richtigkeit noch für die Quelle verantwortlich.

Deterministisches Chaos, Magnetpendel, Drehpendel, Chaotische Phänomene am Beispiel des Drehpedels

CHAOS

1. Deterministisches Chaos – allgemeine Vorbemerkungen

1.1 Einführung

1.2 Was ist deterministisches Chaos?

1.3 Prinzipielle „Unschärfen“

1.4 Chaotische Experimente

2. Das Magnetpendel

2.1 Versuchsaufbau

2.2 Versuchsdurchführung

2.3 Theoretische grundlagen der Simulation

2.4 Optimierung der Formeln

2.5 Veränderung der Ausgangsbedingungen

2.6 Grenzverlauf der Attraktionsgebiete

2.7 Verletzung der starken Kausalität

2.8 Anleitung zu den Simulationsprogramme

3. Das Drehpendel

3.1 Versuchsaufbau

3.2 Versuchsdurchführung

4. Chaotische Phänomene am Beispiel des Drehpedels

4.1 Bifurkationszenario

4.2 Poincaré-Schnitt

4.3 Attraktoren

4.4 Feigenbaumdiagramm

4.5 Logistische Funktion


1.1 Einführung

In den Medien, in populärwissenschaftlichen Veröffentlichungen und auf Ausstellungen ist immer öfter von „Chaos“ die Rede. Insbesondere beschäftigen sich jedoch die unterschiedlichsten Wissenschaftsbereiche wie beispielsweise Kunst, Wirtschaft, Mathematik und Physik damit. Wichtige Mitbegründer der mathematisch- physikalischen Forschungsrichtung waren Benoît Mandelbrot und Henri Poincaré, die den Begriff „deterministisches Chaos“(1) entscheidend mitprägten, mit dem sich diese Facharbeit befaßt.

1.2 Was ist deterministisches Chaos?

Der Begriff „deterministisch“ (lat.: bestimmbar, berechenbar) bedeutet, daß das beschriebene System durch lösbare Gleichungen beschreibbar ist. Daraus folgt jedoch nicht, daß es eine Funktion geben muß, die die Phase(2) eines Systems zur Zeit in Beziehung setzt. Der Begriff „Chaos“ heißt, daß das Zeitverhalten des Systems irregulär ist. Es darf also nicht periodisch sein, d.h. es darf sich nicht wiederholen.

Deterministische chaotische Prozesse sind demnach solche, „deren zeitliche Entwicklung einerseits deterministischen Differenzen- bzw. Differentialgleichungen folgt, die sich aber auf der anderen Seite durch irreguläres, scheinbar zufälliges (chaotisches) Zeitverhalten auszeichnet. Das bedeutet, daß sowohl reguläre Prozesse (stationäre, periodische, mehrfachperiodische Prozesse) als auch rein stochastische Prozesse nicht unter deterministisches Chaos fallen. Reguläre Prozesse erfüllen nicht die Bedingung des irregulären Zeitverhaltens; stochastische Prozesse sind nicht durch deterministische Gleichungssysteme beschreibbar, sondern nur durch Wahrscheinlichkeitsverteilungen. Deterministisches Chaos deckt den gesamten Bereich zwischen diesen beiden Grenzfällen ab.“(3) Es ist wichtig, nochmals auf den Unterschied zwischen stochastischen Prozessen (Systemen also, die auf reinem Zufall basieren) und deterministischem Chaos hinzuweisen, da diese Begriffe (u.a. auch in älterer Literatur) häufig nicht präzise unterschieden werden.

„Es scheint paradox, daß Chaos deterministisch ist, erzeugt nach festen Regeln ohne stochastische Elemente. Prinzipiell ist die Zukunft durch die Vergangenheit vollständig bestimmt, aber praktisch werden kleine Fehler verstärkt – das Verhalten ist deshalb zwar kurzfristig vorhersagbar, langfristig aber unvorhersagbar.“(4)

Das folgende Beispiel verdeutlicht diese Fehlerverstärkung: „Bei einem idealisierten Billardspiel sollen die Kugeln ohne Energieverlust über den Tisch rollen und zusammenstoßen. Mit einem einzigen Stoß schickt der Spieler die Kugeln in eine längere Folge von Kollisionen; er möchte die Wirkung eines Stoßes abschätzen. Für welchen Zeitraum könnte ein Spieler mit perfekter Kontrolle über den Stoß die Bahn des Spielballs vorhersagen? Sofern er nur einen Effekt vernachlässigt, dessen Stärke der gravitiven Anziehung eines Elektrons am Rande der Milchstraße entspricht, wäre die Vorhersage bereits nach einer Minute falsch. Die Ungenauigkeiten wachsen so schnell, weil die Kugeln rund sind und deshalb kleine Bahnabweichungen bei jedem Zusammenstoß vergrößert werden. Das Anwachsen geschieht exponentiell: (…) Bei jeder Kollision wird der Gesamtfehler multipliziert; auf diese Weise erreicht jeder noch so kleine Effekt rasch makroskopische Dimensionen. Das ist eine der fundamentalen Eigenschaften von Chaos.“(5)

Die zwei wesentlichen Phänomene von deterministisch chaotischen Systemen sind also das exponentielle Anwachsen von Fehlern (bzw. Unschärfen) bei den Meßwerten und das irreguläre Verhalten, das sich durch deterministische Gleichungen beschreiben läßt.

1.3 Prinzipielle „Unschärfen“ bei den Meßwerten

Laplace behauptete 1776, daß man den Zustand des Universums für künftige Jahrhunderte genau bestimmen könne, sofern man den augenblicklichen Zustand ebenso genau bestimmen könne.(6) Doch 1903 wurde diese Behauptung von Poincaré widerlegt, der feststellte, daß „ein kleiner Fehler zu Anfang (…) später einen großen Fehler zur Folge haben [wird]. Vorhersagen werden unmöglich und wir haben ein zufälliges Ereignis.“(5)

Könnte man aber den Zustand am Anfang völlig exakt bestimmen, und wäre es möglich, mit diesen Meßwerten zu rechnen, so hätte Laplace jedoch (bei Vernachlässigung des unendlichen Aufwands) recht. Da man aber davon ausgehen kann, daß die betrachteten Meßwerte (Auslenkung, Geschwindigkeit, Ort, etc.) kontinuierlich sind, müßten sie auf unendlich viele Stellen genau angegeben werden, was eine digitale Verarbeitung dieser Daten technisch unmöglich macht. Darüber hinaus würde auch die Heisenberg’sche Unschärferelation(7) eine völlig exakte Bestimmung aller Meßwerte nicht zulassen.

1.4 Chaotische Experimente

In dieser Facharbeit werden zwei chaotische Experimente theoretisch behandelt: das Magnetpendel und das Drehpendel. Hierfür wurden Computersimulationen in der Sprache „C“ programmiert, deren Ergebnisse ausgewertet und daraus generelle Erkenntnisse der Chaosforschung abgeleitet werden. Dabei wird auch deutlich, daß selbst das Chaos an gewisse „Regeln“ gebunden ist, daß es Aspekte gibt, die in jedem chaotischen Experiment zu finden sind und daß auch der ästhetische Aspekt der Chaosanalysen seinen Reiz besitzt.

Um in dem vorgegebenen Rahmen ein möglichst breites Spektrum zu behandeln, werden die gewonnen Erkenntnisse(8) vereinfacht und nur in einem stark beschränkten Umfang ausgeführt.

Die Programme sind sowohl als Programmquelltext(9) als auch als ausführbare Programme für einen IBM-PC kompatiblen Rechner auf Diskette beigelegt. Manche Programme („MAUSPEND“ und „FEIGBAUM“) benötigen eine Maus; ein 486er oder ein besserer Rechner wird empfohlen. Die Programme laufen unter der DOS-Kommandozeilenebene; benötigte Parameter werden mit dem Programmaufruf übergeben, wodurch die Parametereinstellungen in sogenannte „Batchfiles“ gespeichert werden können.




1 Im Folgenden auch kurz „Chaos“ genannt
2 Die Phase eines Systems beschreibt seinen aktuellen Zustand eineindeutig. Bei einem Teilchen, das frei von äußeren Einflüssen ist, wäre dies sein Ort und Impuls. Wäre es angeregt, müßte noch der Zustand des anregenden Systems beachtet werden.
3 Atmanspacher, Morfill [3], Seite 1f
4 Crutchfield, Farmer, Packard, Shaw [4], Seite 8
5 Crutchfield, Farmer, Packard, Shaw [4], Seite 11
6 Crutchfield, Farmer, Packard, Shaw [4], Seite 10
7 Der Impuls und der Ort eines Teilchens (und somit dessen Phase) sind nicht beliebig genau bestimmbar
8 Weitere Einzelheiten, insbesondere zum Drehpendel, siehe [1]
9 Die Programmquelletexte sind C-Sourcecodes (insbes. für BorlandC 3.1)



n

2. Das Magnetpendel


2.1 Versuchsaufbau

Drei mit verschiedenen Farben (rot, gelb und blau) gekennzeichnete, gleich große und gleich starke Magneten werden so auf eine Ebene gestellt, daß sie die Ecken eines gleichseitigen Dreiecks mit der Seitenlänge 20 cm bilden. Über den Schwerpunkt dieses Dreiecks wird ein Pendel (ein Faden von etwa 1,5 m Länge, an dem eine mit Graphit bedampfte Styroporkugel mit einem Durchmesser von etwa 3 cm befestigt ist) gehängt, so daß es die Magneten knapp nicht mehr berührt. Die Kugel pendelt unter dem Einfluß der Anziehungskraft der drei Magneten. (Abb. 2.1.1)

Die oben gegebenen Maße sind nur Beispiele und lassen sich beliebig ändern. Die Magneten sollten jedoch immer stärker als die Schwerkraft sein, um das Pendel aus dem Schwerpunkt des Dreiecks, dem natürlichen Ruhepunkt des Pendels, herauszuziehen.

2.2 Versuchsdurchführung

Bewegt man das Pendel zu einem beliebigen Anfangspunkt und läßt ihm dann freien Lauf, so bewegt es sich in chaotischen Schleifen und kommt schließlich (wegen der Luftreibung) über einem der drei Magneten zum Stillstand. (Abb. 2.2.1)

Aber über welchem? Neben den durch die Anordnung bestimmten Konstanten ist die Startposition die einzige Größe, die auf das Ergebnis Einfluß nimmt. Ein Magnet zieht das Pendel dann an sich, wenn es in seiner unmittelbaren Umgebung gestartet wird. Andernfalls kann das Pendel jedoch auch über einem Magneten stehenbleiben, der von der Startposition weit entfernt ist. Ist letzteres der Fall, ist also nur eine Anfangsposition gegeben, die nicht im direkten Einflußgebiet des Magneten liegt, so lassen sich über die Bahn, die das Pendel beschreibt -und damit auch über dessen Endposition- keine Vorhersagen treffen.

Um dieses Phänomen näher zu untersuchen, wird der Startpunkt (also die Position des Pendels beim Loslassen) dem Endpunkt (der Magnet, an dem das Pendel am Schluß „hängenbleibt“) gegenübergestellt. Dies geschieht in Form einer Karte, auf der der Startpunkt mit der Farbe des Magneten gefärbt wird, über dem das Pendel letztendlich stehen bleibt. Ein Pendel, das über einem roten Gebiet der Karte, dem Attraktionsgebiet des roten Magneten, gestartet wird, bleibt demnach schließlich über dem roten Magneten stehen.

Zeichnet man mehrere Karten (mit den gleichen Magneten und Naturkonstanten), so wird man feststellen, daß sie sich voneinander unterscheiden, obwohl der durchgeführte Versuch jedesmal der gleiche ist. Eindeutige Gebiete wie die um die Magneten selbst werden sich nicht ändern, da in diesem Fall das Pendel sofort am Magnet hängenbleibt, aber der „Rest“ wird sich voneinander unterscheiden. Dies liegt daran, daß man nie zweimal genau denselben Startpunkt treffen kann. Auch wenn der Unterschied zwischen den Anfangspunkten noch so gering ist, so vergrößert sich die Differenz zwischen den Pendelbahnen im Verlauf des Experiments so stark, daß sie nachher so groß ist wie die Meßwerte selbst.

Die Auswertung ist jedoch mit den Mitteln des Experiments nur äußerst mühsam zu erfassen. Hier hilft die Computersimulation.

2.5 Veränderung der Ausgangsbedingungen

[Kleiner Ausschnitt gekürzt, ebenfalls wegen Formeln]

Dieser Abschnitt beschäftigt sich deshalb mit den Auswirkungen der Veränderung der Reibung. Verkleinert man beispielsweise die Reibungskonstante µ, so verliert das Pendel erst später seine Energie; es pendelt also länger. Dadurch wird der Unterschied der Bahnen von zwei benachbarten Anfangspunkten immer größer. Dies wirkt sich besonders an den Grenzen der Attraktionsgebiete(1) aus: sie verzahnen sich stärker, und die Unvorhersagbarkeit nimmt zu.

Die Abbildungen 2.5.1 und 2.5.2 verdeutlichen dies. Während bei einem Wert von µ = 0,065 -außerhalb der eindeutigen Bereiche um die drei Magneten- die Grenzen zwischen den Attraktionsgebieten noch relativ klar sind, herrscht bereits bei einem Wert von µ = 0,028 ein chaotisches Punktewirrwarr, bei dem kaum mehr von „Grenzen“ im eigentlichen Sinn des Wortes gesprochen werden kann. Auf den zweiten Blick lassen sich jedoch Strukturen erkennen.


2.6 Grenzverlauf der Attraktionsgebiete

Vergrößert man immer wieder Ausschnitte von Grenzverläufen, so wird man feststellen, daß zwischen den Attraktionsgebieten zweier Magneten immer das Attraktionsgebiet des dritten Magneten liegt. Wie kann das sein?

Befindet sich das Pendel in der Nähe der Grenze zweier Attraktionsgebiete, ist die Anziehungskraft von dem näheren der konkurrierenden Magneten größer. Der stärkere Magnet „gewinnt“ und kann das Pendel an sich reißen. Was passiert aber unmittelbar an der Grenze? Hier heben sich die Kräfte der beiden Magneten nahezu auf, so daß die resultierende Kraft nicht mehr zu einem der beiden Magneten zeigt, sondern senkrecht auf der Geraden durch die beiden Magneten steht. Hier „freut“ sich der dritte Magnet, nutzt seine Chance und zieht das Pendel an sich. Jetzt gibt es aber wieder zwei Gebiete verschiedener Magneten, die aneinanderstoßen. Das ganze Spiel wiederholt sich; zwar nicht an der selben Stelle der Pendellaufbahn, sondern am nächsten „Entscheidungspunkt“.

2.7 Verletzung der starken Kausalität

Versucht man, das Pendel mehrmals am gleichen Anfangspunkt zu starten, so könnte vermutet werden, daß das Pendel immer eine ähnliche Bahn beschreiben und schließlich beim selben Magneten hängenbleiben wird. Diese Vermutung beruht auf dem Axiom der starken Kausalität, das James C. Maxwell 1879 folgendermaßen beschrieb: „Es ist eine metaphysische Doktrin, daß gleiche Ursachen gleiche Wirkungen nach sich zögen. Niemand kann sie bestreiten. Ihr Nutzen aber ist gering in einer Welt wie dieser, in der gleiche Ursachen niemals wieder eintreten und nichts zum zweiten Mal geschieht. Das daran anlehnende physikalische Axiom [der starken Kausalität] lautet: Ähnliche Ursachen haben ähnliche Wirkungen. Dabei sind wir von der Gleichheit übergegangen zu Ähnlichkeit, von absoluter Genauigkeit zu mehr oder weniger grober Annäherung“ (2)

Bei chaotischen Systemen sieht die Wirklichkeit anders aus: Ähnliche Anfangspunkte in einem „strittigen“ Gebiet (also in einem Gebiet, in dem die Grenzen der Attraktionsgebiete der einzelnen Magneten stark verzahnt und flächenmäßig recht klein sind) führen zu vollkommen verschiedenen Laufbahnen des Pendels. Die anfangs zwar annähernd gleichen Anfangspunkte entfernen sich exponentiell voneinander und enden meist bei verschiedenen Magneten. Dies ist der sogenannte „Schmetterlingseffekt“ oder, anders gesagt, die Verletzung der starken Kausalität: In chaotischen Systemen können ähnliche Ursachen völlig verschiedene Wirkungen haben; kleine (auf den ersten Blick unbedeutende) Veränderungen können sich mit der Zeit derart verstärken, daß sie nachher so groß wie die Meßwerte selbst sind. Das Programm „MAUSPEND“ demonstriert dieses Verhalten.

1 Das Attraktionsgebiet eines Magneten i ist (in diesem Fall) die Menge aller Anfangspunkte, deren (durch die Pendellaufbahn zugeordnete) Endpunkte über dem Magneten i liegen.
2 Worg [1], Seite 32





3. Das Drehpendel


3.1 Versuchsaufbau

Ein Rad ist mit seinem Mittelpunkt an einer Stange befestigt, die frei drehbar gelagert ist. An der Stange ist außerdem eine Spiralfeder angebracht, die das Rad im unangeregten Zustand in eine Ruheposition bringt. Nun wird die Feder durch einen Oszillator angeregt, was mit der Anregung des Rades durch den Oszillator gleichzusetzen ist. Die Drehung wird durch einen Wirbelstromkreis, dessen Stärke frei einstellbar ist, gedämpft. Dies soll u.a. eine sogenannte Resonanzkatastrophe vermeiden, die durch die ständige Energiezufuhr durch den Oszillator entstehen könnte.

Nach einiger Zeit stellt sich die Drehfrequenz des Rades auf die Oszillatorfrequenz ein. In dieser Form dreht sich das Rad in einer vollkommen linearen Weise – wie ein Pendel, das keiner äußeren Einwirkung unterliegt.

Bringt man nun eine kleine Unwucht so am Rad an, daß sie bei einer Auslenkung der Feder um 0° nach oben zeigt, so ändert sich das Verhalten des Pendels: es wird chaotisch.

3.2 Versuchsdurchführung

Der oben beschriebene Versuch wurde an einem Drehpendel der Ludwig-Maximilians- Universität durchgeführt. Dabei wurde deutlich, daß die Anregungsfrequenz in der Nähe bzw. etwas unter der Eigenschwingfrequenz des Pendels liegen muß, damit es zu einer Resonanz und damit zu einem chaotischen Verhalten des Pendels kommt.

Die aktuelle Auslenkung und die Geschwindigkeit des Pendels wurden während des Versuchs gemessen und zur Auswertung an einen Computer weitergeleitet, der u.a. ein Auslenkungs/Zeit (j/t) – und ein Winkelgeschwindigkeit/Auslenkungs (w/j) – Diagramm ausdrucken konnte (siehe Abbildung 3.2.1, die direkt aus dem Drehpendelversuch stammt. Die Masse der Unwucht betrug dabei 100g). [Tut mir leid wegen der komischen Buchstaben; das j sollte eigentlich ein phi sein und das w ein omega].

Vergleicht man diese Abbildung mit denen aus der Simulation (vgl. 4.1), so kann man eine Ähnlichkeit feststellen. In 4.1 wird auch die Bifurkation (Aufspaltung einer Schwingung) näher erklärt.


4. Chaotische Phänomene am Beispiel des Drehpedels

4.1 Bifurkationszenario

Bei einem relativ hohen M0 Brems (=0,105) tritt eine periodische Schwingung auf (Abb. 4.1.1). Bei einer Verkleinerung der Dämpfung ist eine höhere Schwingungsamplitude zu erwarten, da die Wirbelstrombremse weniger Energie abführt. Weil sich aber auch die Geschwindigkeit (und damit auch die Bremswirkung) des Pendels erhöht, wird die Amplitude nicht laufend höher, sondern pendelt sich bei einer gewissen (etwas größeren) Amplitude ein.

Senkt man die Dämpfung (auf M0 Brems = 0,0994), so spaltet sich die Grundschwingung in zwei Schwingungen mit verschiedenen Amplituden auf, die sich nach jedem Schwingungsdurchgang abwechseln (Abb. 4.1.2). Dieses Verhalten nennt man Bifurkation, das sich wie folgt erklären läßt: „Die Eigenfrequenz des Pendels ist abhängig von der Amplitude (…). Da die Anregungsperiode [des Oszillators] konstant bleibt, liegt bei größerer Amplitude keine Resonanz vor und die Amplitude wird kleiner. Bei der kleineren Amplitude stimmen Eigenschwingperiode und Anregung wieder zusammen, es herrscht wieder Resonanz. Die Amplitude wächst und der Zyklus beginnt wieder von vorne.“(1)

Verringert man die Dämpfung noch weiter (auf 0,093), so spaltet sich die Schwingung wiederum auf. Die beiden Teilschwingungen sind jetzt jeweils zwei Perioden lang. (2. Bifurkation, Abb. 4.1.3). Bei nochmaliger Verkleinerung von M0 Brems (auf 0,0925) teilt sich die Schwingung abermals in zwei Teilschwingungen mit jeweils vier verschiedenen Perioden auf. (3. Bifurkation, Abb. 4.1.4). Diese Schwingung wiederholt sich also erst nach dem achtfachen der ursprünglichen Periodenlänge. Ab hier sind die Abstände zwischen den Bifurkationen so klein, daß sie kaum mehr „getroffen“ werden können.

Bei einem Wert von M0 Brems = 0,092 ist das Verhalten chaotisch. (Abb. 4.1.5) „Es stellt sich auch nach langer Einschwingzeit kein periodischer Vorgang ein, das System schwingt unregelmäßig (…). Der Vorgang ist natürlich immer noch deterministisch (…), aber nicht mehr stark kausal. Kleinste Störungen wirken sich stark auf das Verhalten aus, eine Langzeitvorhersage ist nicht mehr möglich (…).“(2)

Bei einer noch kleineren Dämpfung (M0 Brems = 0,06) tritt plötzlich wieder Ordnung auf – es stellt sich eine stabile Schwingung ein (Abb. 4.1.6). Diese nennt man ein „Fenster im Chaos“.

Verkleinert man M0 Brems weiter, werden die Schwingungen wieder chaotisch (Abb. 4.1.7).

Betrachtet man eine Reihe von chaotischen Schwingungen in einer Folge, können mehrere ähnliche Schwingungen hintereinander erkannt werden, die schließlich „aufbrechen“ und sich zu einer neuen Schwingung formieren (Abb. 4.1.8). Es handelt sich hierbei um das Phänomen der Unterbrechung [intermittency]. Hier bleibt ein physikalisches System einige Zeit statisch, bis es plötzlich für einige Zeit einen chaotischen Ausbruch zeigt und dann wieder statisch ist; danach kommt wieder ein chaotischer Ausbruch und so weiter.(3)

4.2 Poincaré-Schnitt

Die Schwingung des chaotischen Drehpendels hat (neben den Konstanten) genau drei Variablen, die den aktuellen Zustand des Pendels eindeutig beschreiben. Diese Variablen sind die Auslenkung des Pendels j, dessen Geschwindigkeit w und der Zustand des Oszillators, dem t modulo T(4) entspricht, da die Anregung des Oszillators periodisch ist (d.h. sich alle T Zeiteinheiten wiederholt). Sind alle Variablen exakt gegeben (in der Realität aber niemals möglich), so kann die weitere Laufbahn des Pendels berechnet werden.

Die drei Variablen geben einen Raum, den sogenannten Phasenraum. In ihn kann die gesamte Bahn des Pendels eingezeichnet werden, indem für jede Phase des Pendels (bestimmt durch t modulo T, j und w) ein Punkt eingezeichnet wird. Der Raum wird des weiteren so gekrümmt, daß die Ebenen für t = nT (n element N0+) übereinanderliegen. Die Linien können sich nicht schneiden, da es sonst zu einem Punkt zwei Möglichkeiten geben würde, wie es vom Schnittpunkt aus weitergehen könnte, was aber unmöglich ist, da ein Punkt den Zustand des Pendels eineindeutig festlegen muß.

Die Bahn kann jedoch geschlossen sein. Das bedeutet dann, daß die Schwingung des Pendels periodisch ist (sich wiederholt). In diesem Fall handelt es sich um einen Bifurkationszustand und nicht um „echtes“ Chaos. „Ein charakteristisches Merkmal im Fall einer chaotischen Bewegung ist, daß Kurven, die durch zwei benachbarte Punkte im Phasenraum gehen, nicht beieinander bleiben, sondern sich exponentiell voneinander entfernen.“(5)

Da ein dreidimensionaler Raum schwer darzustellen und zu überblicken ist, reduziert man die Daten durch den Poincaré-Schnitt. Es wird hierbei eine günstig gelegte Ebene durch den Phasenraum gelegt und dann nur die Stoßpunkte durch die Ebene anstatt der gesamten Laufbahn des Pendels registriert. Eine günstige Schnittebene wird beispielsweise durch die Festlegung des Oszillators auf t modulo T = 0 erreicht.

Eine kontinuierliche Bahn wird also durch den Poincaré-Schnitt auf eine Folge von Punkten reduziert, die man ihren Orbit nennt(6). Eine periodische Bahn hat eine begrenzte Anzahl von Schnittpunkten, die gleich der Zahl der Schwingungen des Pendels ist. Eine quasiperiodische Bahn (sie kommt nicht zum Ausgangspunkt zurück, sondern ist geringfügig versetzt), eine Bahn also, bei der sich alle Schwingungen ähneln, aber nicht gleich sind, „produziert im Poincaré-Schnitt [eine] gepunktete Linie, die das Zentrum des Bildes umschließt. (…) Während periodische Bahnen im Poincaré-Schnitt als ein Muster aus isoliert liegenden Punkten erscheinen, bilden quasiperiodische Orbits Linienstrukturen. Chaotische Orbits hingegen füllen ganze Bereiche der Schnittebene aus (…). Bilder von der Art (…) zeigen auf einen Blick, wo ein System sich einfach, das heißt langfristig prognostizierbar, und wo es sich chaotisch, das heißt auf lange Sicht unvorhersagbar, verhält.“(7)

4.3 Attraktoren

Wird die Bahn eines Systems nach einer gewissen Einschwingzeit in den Phasenraum eingezeichnet, so nennt man das entstandene Gebilde einen Attraktor. Wird das System mit verschiedenen Anfangswerten gestartet (z.B. mit unterschiedlichen Anfangsauslenkungen j, aber bei gleichbleibenden Konstanten wie etwa der Dämpfung), so nähert sich die Phasenbahn dem Attraktor asymptotisch an. Es gibt verschiedene Arten von Attraktoren:

· der Fixpunkt. Dieser tritt bei einem gedämpften System ohne Anregung auf. Das System bewegt sich auf diesen Punkt zu, bei dem die Geschwindigkeit null und der Ort ein Ruhepunkt ist. Beim Drehpendel wären in diesem Punkt j = jRuhe und w = 0. Das Magnetpendel hat dagegen drei Fixpunkte: über den drei Magneten.

· der Grenzzyklus. Das System bewegt sich unabhängig vom Anfangspunkt mit der Zeit asymptotisch zu einer geschlossenen Kurve im Phasenraum hin(8). Das System kommt auch langfristig nicht zur Ruhe, sondern erreicht (nach einer gewissen Einschwingzeit) immer den gleichen Zyklus: den Grenzzyklus.

· der seltsame Attraktor. Er ist eine dreidimensionale Bahn im Phasenraum, die nicht geschlossen ist. Aber auch an diesen komplizierten Attraktor nähern sich die Bahnen von verschiedenen Anfangswerten an. Bei einem Poincaré-Schnitt durch den seltsamen Attraktor bemerkt man, daß auch hier eine Art Ordnung herrscht.

4.4 Feigenbaumdiagramm

Die Punkte des Poincaré-Schnitts eines Systems sind ausreichend, um seinen Bifurkationsgrad und seine Komplexität bzw. Art (Bifurkation oder Chaos) zu bestimmen. Ein System mit einer periodischen Schwingung hat genau einen Schnittpunkt; nach der ersten Bifurkation genau zwei verschiedene Schnittpunkte, nach der zweiten Bifurkation sind es vier. Dies liegt daran, daß sich eine Schwingung mit n verschiedenen Schnittpunkten bei einer Bifurkation in zwei verschiedene Schwingungen mit je n Schnittpunkten aufteilt. Bei jedem Schritt verdoppelt sich also die Zahl der Schnittpunkte. Das heißt, daß ihre Anzahl gleich 2^Grad der Bifurkation [das „^“ heißt „hoch“ und ist fü die Browser, die das nicht anders darstellen können] ist, oder umgeformt: Grad = log2 Anzahl. Die Anzahl der Schnittpunkte gibt somit die Komplexität einer Schwingung an. Um dieses Phänomen näher zu untersuchen und um die Grenzen zwischen den einzelnen Bifurkationen näher kennenzulernen, stellt man die Pendelauslenkung j in den Schnittpunkten der Dämpfung M0 Brems gegenüber (Abb 4.3.1).

An der Abszisse der Abbildung 4.3.1 ist die Dämpfung (M0 Brems) angetragen. Links beginnt sie bei 0 und endet rechts bei 0,125. An der Ordinate ist die Auslenkung j der einzelnen Poincaré-Schnittpunkte angetragen (oben ist +pi, unten -pi), die erst nach einer gewissen Einschwingzeit des Pendels eingezeichnet wurden, da das Pendel eine bestimmte Zeit braucht, bis es sich in der für die Dämpfung typischen Schwingung befindet.

Es fällt auf, daß der Quotient der Dämpfungsunterschiede (deltai = (ci-1 – ci) : (ci – ci+1) ) konstant ist. Die Abweichung des letzten Wertes (delta5) ist auf die begrenzte Genauigkeit der Meßwerte zurückzuführen. Die Bifurkationsgrenzen lassen sich also folgendermaßen berechnen: ci = cunendl. + k · delta-i, wobei in diesem Fall cunendl. ungefähr 0,0922976 und k ungefähr 0,0459662 ist.

Das chaotische Punktewirrwarr ist also keine Schwingung mit relativ hohem Bifurkationsgrad (wie man vielleicht annehmen könnte), da Schwingungen mit endlichem Bifurkationsgrad nur bei einer Dämpfung auftreten, die größer als cunendl. ist.

4.5 Logistische Funktion

Das Rotationspendel ist ein sich kontinuierlich entwickelndes bzw. in der Simulation ein sich annähernd kontinuierlich entwickelndes physikalisches System. Das heißt, daß sich die beobachtete Variable (= Darstellungsvariable, im behandelten Fall die momentane Auslenkung j) kontinuierlich ändert, d.h. größer und kleiner wird. Zur Analyse des Systems wird eine Datenreduktion vorgenommen: Es werden nur noch die Tiefpunkte der Auslenkung registriert, der Rest der Pendellaufbahn wird nicht beachtet.

Diese Datenreduktion (= Diskretierung) wird nun auch für die Erzeugung der Daten verwendet. Das System des Rotationspendels kann somit nicht mehr angewandt werden, sondern es wird ein System benötigt, das bei jedem Iterationsschritt verwendbare, d.h. sinnvolle Daten liefert: die logistische Funktion. Sie ist eine einfache mathematische Abbildung und hat auf den ersten Blick nichts mit den bereits behandelten Pendelschwingungen zu tun.(9)

(4.5.1) Xneu = c · Xalt · (1 – Xalt)

X ist hierbei die Darstellungsvariable, c der Kontrollparameter. Diese iterative Abbildung liefert zu jedem Wert einen neuen, von c abhängenden Wert. Dieser kann dann erneut als „alter“ Wert in die Gleichung eingesetzt werden.

„Die logistische Abbildung wird im Einheitsintervall x element [0;1] betrachtet. In diesem Einheitsintervall besitzt sie die Nullstellen xz1 = 1 und xz2 = 0. Ihr Maximum erhält man aus der Differentiation von (4.5.1) zu xmax = 0,5. Der dazugehörige Funktionswert ist f(xmax) = [c] : 4. Wegen der Bedingung x element [0;1] ist also [c] element [0;4].“(10)

Zahlenreihen, die durch die logistische Iterationsfunktion gewonnen wurden (wobei der Anfangswert gleichgültig ist, sofern er ungleich 0 und ungleich 1 ist, da sonst Xneu ebenfalls Null ist), können in drei grundsätzlich verschiedene Arten untergliedert werden:

· Konvergenz gegen einen bestimmten Wert; für c < 1 ist dieser Wert Null (Abb. 4.4.1)

· Wiederholung (nach einer gewissen „Einschwingzeit“) (Abb. 4.4.2 bis 4.4.5)

· Keine Regelmäßigkeit (Abb. 4.4.6)

Betrachtet man die periodischen Schwingungen (Abb. 4.4.2 bis 4.4.4) genauer, so erinnern sie stark an ein Bifurkationsszenario, wie es in 4.1 besprochen wurde (eine Schwingung spaltet sich bei jeder Bifurkation in zwei Unterschwingungen auf).

Die Abbildungen 4.4.7 bis 4.4.10 zeigen verschiedene Ausschnitte und Vergrößerungen aus dem Feigenbaumdiagramm der logistischen Funktion. Der Kontrollparameter c wurde an der Abszisse angetragen (von 2,5 bis 4) und von links nach rechts schrittweise erhöht. Die jeweils vorkommenden Funktionswerte X wurden (nach einer gewissen „Einschwingzeit“ von 100 Iterationen) auf der Ordinate angetragen.

Auch hier ist der Quotient der Kontrollparameterdifferenzen delta konstant. Ein genauerer Wert lautet(11): delta = 4,6692. Die Bifurkationsgrenzen lassen sich ebenso wie beim Drehpendel berechnen:

(4.5.2) ci = cunendl. + k · delta-i ist ungefähr 3,56992 – 2,65699 · 4,6692-i

delta wird auch Feigenbaumkonstante genannt. Sie wird als universell bezeichnet, da sie nicht nur für die Gleichung (4.5.1) gilt, sondern auch für alle Gleichungen, die ein quadratisches Maximum haben. Hier einige Beispiele(12):

Das Phänomen des Feigenbaumdiagramms und der Feigenbaumkonstante d tritt übrigens bei allen oder zumindest bei den meisten deterministisch chaotischen Systemen auf. Deterministisches Chaos ist also nicht etwas rein Chaotisches und vollkommen Unvorhersagbares, sondern verhält sich in gewissen Punkten gewissermaßen geregelt. Die Regeln sind zwar nicht der Art, wie man sie aus der klassischen Physik kennt, lassen es aber trotzdem zu, gewisse Aussagen über ein System zu treffen und gewisse Parallelen zu anderen Systemen zu ziehen.




1 Worg [1], Seite 49
2 Worg [1], Seite 49
3 Lundquist, March, Tosi [2], Seite 20f
4 t modulo T := Rest von der Teilung von t durch T, d.h.: t-[t/T]
5 vgl. Worg [1], Seite 17
6 vgl. Breuer [5], Seite 33
7 Breuer [5], Seite 33
8 vgl. Lundquist, March, Tosi [2], Seite 21
9 vgl. Worg [1], Seite 63
10 Atmanspacher, Morfill [3], Seite 25
11 aus Worg [1], Seite 66
12 aus Worg [1], Seite 67

Der Autor hat leider keine Quellen genannt.

Direktor Schulnote.de

Anna

Autor dieses Referates

Physik
Schulfach

0 .
Klasse - angegeben vom Autor
0 ,0
Note - angebenem vom Autor


0,0

Note 6Note 5Note 4Note 3Note 2Note 1
Welche Note gibst Du?

Loading…
0
Aufrufe deses Referates
0
lesen gerade dieses Referat

TCP IP-Protokolle und Dienste
Edward Albee
Milben
Mitochondrien
Viren
AIDS Aufbau des HIVirus
Erkenntnisse über AIDS
Was ist AIDS
Alkohol und der Mensch
Aufbau und Wachstum Bakterien
Darstellung verschiedener Sehsysteme
Termiten – Isoptera
Das Auge
Natürliche Zuchtwahl
Funktion des Gehörsinnes
Das menschliche Gehirn
Der Gedanke der Urzeugung
Diabetes Zuckerkrankheit
Die Tropen
Dinosaurier
Elektrosmog
Gentechnik in der Landwirtschaft
Hormone
Parthenogenese
Anatomie des Kehlkopfes
Kommunikation von Bakterien
Konrad Lorenz Verhaltensforscher
Entstehung von Krebs
Ökosysteme in der Tiefsee
Parasitismus
Beschreibung einzelner Parasitenarten
Pest im Mittelalter
Photosynthese
Heroin
Ringelwürmer
Gentechnologie Grundlagen
Alternative Landwirtschaft
Die Medizin im antiken Rom
Der Traum und die Traumpsychologie
Die chemische Bindung
Bohrsches Atommodell
Brom Eigenschaften
Halogene
Der pH-Wert – pH Messtechnik
Chemische Schädlingsbekämpfung
Atomvorstellungen
Benzin
Fettverseifung
Kalk
Natronlauge Sodaherstellung
Grundlagen der Nuklearphysik
Fotographie
Entdeckung des Atoms
Gegenwartsliteratur der Mythos
Das Ikosaeder
Parallele Programmabläufe
Burleske
Alfred Andersch Literaturbesprechung
Besuch der alten Dame
Biographie Erich Kästners
Friedrich Dürrenmatt Literaturbespr…
Georg Büchner Literaturbesprech…
Wolfgang Borchert Literaturbesprechung
Bertolt Brecht Literaturbesprechung
Friedrich Hebbel Literaturbesprechung
Biographie Johann Nepomuk Nestroy
Ernst Theodor Amadeus Hoffmann Liter…
Max Frisch Literaturbesprechung
Die Blechtrommel
Die Bürger von Calais
Carmen Literaturbesprechung
Das Cafe der toten Philosophen
Eichendorff-Marmorbild
Das Tagebuch der Anne Frank Lietratu…
Demian
Der abenteuerliche Simplicissimus
Der Begriff Heimat
Der einsame Weg
Der Name der Rose – Umberto Ecos
Der Realismus
Der Talisman
Georg Büchner Dantons Tod
Deutsche Satire – Vertreter
Die Angst des Tormannes vor dem Elfm…
Die letzten Kinder von Schewenborn
Die Schwarze Spinne
Das Leben des Galilei – Brecht
Draußen vor der Tür
Effi Briest
Emil Kolb
Emil Erich Kästner
Expressionismus
Friedrich Dürrenmatt – Der Verdacht
Ferdinand Raimund
Die Feuerprobe
Fräulein Else
Frauenliteratur
Frühlings Erwachen Literaturbesprec…
The Good Earth
Gegenströmungen zum Naturalismus
Generationenkonflikt in der Literatur
Nicht alles gefallen lassen
Egmont
Goethe als Wissenschaftler
Franz Grillparzer
Hackl Erich
Heinrich Heine
Hermann Hesse Jugend
Homo Faber – Der Steppenwolf
Hugo von Hofmannsthal
Heinrich von Kleist
Henrik Ibsen
Ich bin ein Kumpel
Die Insel des vorigen Tages
Kafka Literaturverzeichnis
Franz Kafka – Das Schloss
Biographie von Franz Kafka
Klassik Literaturbesprechung
Lange Schatten
Gotthold Ephraim Lessing
Liebelei
Literatur der Arbeitswelt
Zeitkritische Literatur im 1. Weltkr…
Literaturmappe Gottfried Keller und …
Biedermeier
Johann Wolfgang von Goethe
Hermann Hesse
Max Frisch Biografie
Analyse Monolog von Faust
Trostlose Monotonie eines Arbeitsall…
Nathan der Weise – Die neuen Leiden…
Neue Sachlichkeit
Nicht nur zur Weihnachtszeit
Ödön von Horvath
Peter Handke
Peter Schlemihls wundersame Reise
Der Prozeß – Franz Kafka
Goerge Orwell 1984
Romantik
Romantik 1795-1835
Friedrich Schiller
Friedrich Torberg – der Schüler
Spielplatz der Helden
Sturm und Drang
Katherine Mansfield: The Dolls House…
Kurt Tucholsky
Unterm Rad von Hemann Hesse
Zukunftsvisionen – Utopien
Vergangenheitsbewältigung
Von Mäusen und Menschen
Vormärz, Junges Deutschland
Richard Wagner
Weh dem der lügt
Bürgerlicher Realismus
1984 – Orwell
Reise um die Erde in 80 Tagen
Maturavorbereitung – Deutsch
Wiener Aktionismus
Analyse rhetorischer Texte
Antike
Arthur Schnitzler Werke
Die Aufklärung
Bertolt Brecht Biographie
Heinrich Böll
Macht der Boulevardpresse
Brennendes Geheimnis
Chagall Biografie und Werke
Mutter Courage und ihre Kinder
Wiener Biedermeier
Datenautobahn
Der Kriminalroman
Die Ehe des Herrn Mississippi
Die Globalisierung
Ilse Aichinger – Die größere Hoffn…
Die Judenbuche – Annette von Droste-…
Die Rolandsage
Dshamilja Tschingis Aitmatow
Friedrich Dürrenmatt Lebenslauf
Dürrenmatt und die Komödie
Die Eisenbahn
Der Expressionismus
Werner Bergengruen – Die Feuerprobe
Franz Kafkas Lebenslauf
Frühlingserwachen von Frank Wedekind
Geschichte des Internets
Die Presse und das Pressewesen
GreenPeace Referat
Der Trend zur Globalisierung
Hermann Hesse Biographie und Werke
Hermann Hesse Kinderseele
Ödön von Horvath – Jugend ohne Gott
Johann Wolfgang von Goethe wichtigst…
Der kaukasische Kreidekreis
Lebenslauf Milan Kundera
Bildende Kunst
Das Drama
Literatur im Mittelalter
Deutsche Literatur im Mittelalter
Literarische Entwicklung ab 1945
Gerhart Hauptmann Biographie
Medienkunde
Die Merowinger
Naturalismus – Hauptvertreter
Naturalismus Hintergrund
Die neuen Rechtschreibregeln
Die Nibelungen Sage
Olympische Spiele
Richard Wagner Parsifal
Realismus
Die Rede
Sansibar
Friedrich Schiller – Don Carlos
Die Welt der Science Fiction
Der Gute Mensch von Sezuan – Brecht
William Shakespeare Biographie
Siddharta
Theodor Fontane – Der Stechlin
Stefan Heym Schwarzenberg
Steppenwolf Hermann Hesse
The Lord of the Rings
Utopien in der Literatur
Ferdinand von Saar Biographie
Warten auf Godot
Wolfgang Borchert Lebenslauf
Wilhelm Tell – Schiller
Wirtschaftsordnungen
Die Verantwortung des Wissenschaftler
Literatur in der Zwischenkriegszeit
Preußen – Gescheiterte Revolution v…
Interviewtechniken Ideenfindung
Nationalsozialismus – Faschismus
Die griechischen Sagen
Die 68er Bewegung
Ernst Theodor Wilhelm Hoffmann – s…
Die Klassik Literatur
Zustandekommen von Vorurteilen
Arbeitslosigkeit
Kollektives Arbeitsrecht
I2C am 80C552 Microprozessor
Cray-Code-Zähler
Hardware für Digitale Filter
Adressierungsarten
Fehlersuche auf Integrierten Schaltk…
Grundschaltungen des JFET
Interrupts
Feldeffekttransistor – JFET
Logikfamilien
Logische Elektronik
PN-Übergang – Halbleiter – Diode
Luftdruckmessung
Dimmerschaltung
Temperaturmessung
IEC-Bus – comp.gest Meßsystem
Messwertaufnehmer
Serielle Datenübertragung
Fuzzy-Logic
Amerikas Westen
Umweltbewusste Energiegewinnung
Zusammenfassung Globalisierung
Bundesrepublik Deutschland
Artificial Intelligence
Doing Business in Japan
Production Technique
Mount Everest – Kilimanjaro – Mc Kin…
New Zealand – Land of the Kiwi
All quiet on the western front
All the kings men
Animal Farm
Animal Farm – Georg Orwell
Tolstoy Anna Karenina
Rain Man
The Call of the Wild
The Catcher in the Rye
Ernest Hemingway For Whom the Bell T…
Count Zero
John Briley Cry Freedom
One Flew Over the Cuckoo s Nest
Marylin Sachs The Fat Girl
William Faulkner As I lay dying
A Farewell to Arms
The invisible man
John Knowles A seperate Peace
A midsummer nights dreamA midsummer …
Of Mice and Men
Harry Sinclair Lewis Babbitt
The House of the Spirits
Little Buddha
The Pearl
Walkabout
Acid Rain
Principles of Marketing – Advertising
Alcohol and Tobacco
Australia
Bill Gates Background information
England and the English
Finance in Britain
Canada
The development of letters and books
Drug Takers
Engines
The Future
The Existence of God
Expert Systems Artificial Intelligence
The first art
The beauty of fractals
From Gliders to Rockets
George Orwell Nineteen Eighty-fou
Heat Treatment of Steel
Hemp
Histroy of the English language
Television
Divided Ireland
Nineteen eighty-four
Production of Iron
Television
The Channel Tunnel
The Client
Internet
The moving finger
The Red Pony
The X-Files
Tombstone
Voices Across the Earth
Kurt Vonnegut
Wire Pirates
Collection of english workouts
Investing in poeple
Economic backgrounds of the Gulf cri…
American Revolution
Virgil The Aeneid
Autism
Die Schweiz
Die sieben Weltwunder
Der Alpentransit
Das Sonnensystem
Die Sterne
Bevölkerungsproblem Chinas
Bodenkundewissenschaften in der 3.Welt
Prachtstraßen in Wien
Paris
Endogene Kräfte – Vulkane
Energie – Gestern Heute Morgen
Entstehung des Erdöls
Japan – Geographische Daten
Entstehung von Erdbeben
Geologie Österreichs
Grönland
Geschichte der Agrarwirtschaft
Ökologische. Belastungen d. Tourismus
Polarlichter
Vulkanismus
Berliner Mauer
Computer im Militärwesen
Demokratie – Ursprung und Entwicklung
Das Burgenland in der Zwischenkriegs…
Die industrielle Revolution in Deuts…
Vormärz Metternichsche Staatensystem
WBRS-Referat Gerichtsbarkeit
Wiener Kongress Metternichs Polizeis…
Der Erste Weltkrieg
der erste Weltkrieg
Der Erste Weltkrieg
Der 2.Weltkrieg
Kriegsverlauf von 1942-1945
Geschichte ab 1848
Alexander der Große
Wien in der Donaumonarchie
Der amerikanische Sezessionskrieg
Weltbilder
Verfassungsstaat – Ausgleich mit Ung…
Außenpolitik unter Adolf Hitler
Die Geschichte der Südslawen am Bal…
Balkankonflikte
War in Bosnia – Herzegowina – a review
Biologische Kriegsführung
Bundeskanzler Engelbert Dollfuß
Cäsars gallische Ethnographie
Geschichte Chinas
Christenverfolgung im Römischen Reich
Rettung der dänischen Juden
Das faschistische Italien
Tatsachenbericht des jüdischen Gesc…
Der Aufstieg Japans
Der Golfkrieg
Der kalte Krieg
Der Nahostkonflikt
Der spanische Bürgerkrieg
Der Deutsche Widerstand
Die zweite Republik
Österreich unter den Babenbergern
Die französische Revolution
Geschichte Frankreichs
Die Kelten
Die lateinische Sprache
Die Phönizier
Die Schlacht von Stalingrad
Die Westslawen
Widerstand gegen Hitler und das At…
Ende des Kolonialsystems in Afrika
Die Ausbildung der Konfessionen
Die Entwicklung im nahen Osten
Faschismus und Nationalsozialismus
Judenverfolgung
Kosovo
Die Geschichte Der Atombombe
Geschichte Jugoslawiens
Griechenland – geographisch und öko…
Griechenland vor den Perserkriegen
Die Grund- und Freiheitsrechte
Die Freiheitlichen und Rechtsextremi…
Die indianischen Hochkulturen Amerikas
Der Imperialismus
Deutsche Kolonien
John Fitzgerald Kennedy
Judenverfolgung der NSDAP
Jugend unter dem Hakenkreuz
Jugend, Schule und Erziehung im 3. R…
Das Königtum im Mittelalter
Geschichte Koreas vor dem 2. WK
Der Koreakrieg
Lebenslauf von Adolf Hitler
Das Lehnswesen im Mittelalter
Das Erbe des Mittelalters und der We…
NATO Referat
Otto von Bismarck
Pariser Vorortverträge
Der Fall Barbarossa
Pol Pot
Der Faschismus in Rom
Das sowjetische Experiment
Die Russische Revolution von 1917
Rolle der Schweiz im zweiten Weltkrieg
Die SS und ihr Krieg im Westen
Die Trajanssäule
Die Außenpolitik der USA
Der Erste Weltkrieg
Die Wandmalerei Kalk
Alexanders Weg zur Größe
Der Erste Weltkrieg
Zentralisierung Entstaatlichung NS R…
Zivilgerichtsbarkeit
Wie sich der Mensch aus dem Tierreic…
Bürgertum in Frankreich im 18. Jahr…
Die Europäische Union – EU
Geschichte – Die Entstehung von Hoc…
China
Die Ringstraße
Islamische Kunst in Spanien
Die Römer und die Philosophie
Augustinus – Kirchenvater und Philos…
UHF–und-Mikrowellen-Messtechnik
Datenübertragung – Begriffe
Compilerbau
Datenbankserver – SQL
Großrechner
Kryptologie
Magnetspeicher
Instrumentationen und Schnittstellen
Optische Nachrichtensysteme mit Lich…
Monitore und Grafikkarten
Netzwerktechnik
Windows NT Ressourcenverwaltung
Objektorientierte Programmierung
Plotter und Drucker
AMD-K6-III Prozessor
Einführung in die fraktale Geometrie
Matura Mathematik
Mathematik Zusammenfassung
Mathematik der Funktionen
Funktionen Mathematik
Wahrscheinlichkeitsrechnung
Maturamappe Mathematik
Referat-Albert-Einstein
Alternativenergiegewinnung
Doppler-Effekt
Der-Delphi-Report
Grundlagen-zum-Thema-Strom
Gravitationsfeldstärke
Optik-Referat
Kernfusion–Wasserstoffbombe
Laser
Die-Quantentheorie
Der-Stirlingmotor
Sternentwicklung
Antimaterie
Kernspaltung
Batterien-Akkumulatoren
Explosivstoffe
Flammenfärbung-Feuerwerke
Natürliche-Radioaktivität
Modell-für-elektrische-Leitungsvorg…
Photographie
Radioaktivität
Raketenantriebe
James-Joyce-The-Dead
Reibung
Der-Saturn
Solarzellen
Kommutierung
Photovoltaik
Schwingungen-und-Wellen
Liturgiegeschichte
Die Spieler im Systemspiel
Schutz für Dateien
Aufwandschätzung
Ausgeglichene Bäume
AVL-Bäume
Betriebssysteme
Binäre Bäume
Der Algorithmus von Bresenham
Computerviren
Concurrency-Problem
3D-Grafik

Insgesamt 513 Referate von Anna

YKM.de ✔ Quickly Shorten Url

YKM.de ✔ Quickly Shorten Url

ykm.de/SN_Phy_5679

Diese short-URL bringt Dich direkt zu  Biographie Referate auf schulnote.de.
Teile Sie mit Deinen Freunden.

Diese Suche hilft Dir, alles auf den Seiten von schulnote.de zu finden. In den Schulfächern kannst du Deine Suche verfeinern, in dem Du die Tabellensuche verwendest.